Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 9(50): 29316-29335, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30034620

RESUMO

Epigenome regulates gene expression to determine cell fate, and accumulation of epigenomic aberrations leads to diseases, including cancer. NCD38 inhibits lysine-specific demethylase-1 (LSD1), a histone demethylase targeting H3K4me1 and H3K4me2, but not H3K4me3. In this study, we conjugated NCD38 with a potent small molecule called pyrrole (Py) imidazole (Im) polyamide, to analyze whether targets of the inhibitor could be regulated in a sequence-specific manner. We synthesized two conjugates using ß-Ala (ß) as a linker, i.e., NCD38-ß-ß-Py-Py-Py-Py (NCD38-ß2P4) recognizing WWWWWW sequence, and NCD38-ß-ß-Py-Im-Py-Py (NCD38-ß2PIPP) recognizing WWCGWW sequence. When RKO cells were treated with NCD38, H3K4me2 levels increased in 103 regions with significant activation of nearby genes (P = 0.03), whereas H3K4me3 levels were not obviously increased. H3K27ac levels were also increased in 458 regions with significant activation of nearby genes (P = 3 × 10-10), and these activated regions frequently included GC-rich sequences, but less frequently included AT-rich sequences (P < 1 × 10-15) or WWCGWW sequences (P = 2 × 10-13). When treated with NCD38-ß2P4, 234 regions showed increased H3K27ac levels with significant activation of nearby genes (P = 2 × 10-11), including significantly fewer GC-rich sequences (P < 1 × 10-15) and significantly more AT-rich sequences (P < 1 × 10-15) compared with NCD38 treatment. When treated with NCD38-ß2PIPP, 82 regions showed increased H3K27ac levels, including significantly fewer GC-rich sequences (P = 1 × 10-11) and fewer AT-rich sequences (P = 0.005), but significantly more WWCGWW sequences (P = 0.0001) compared with NCD38 treatment. These indicated that target regions of epigenomic inhibitors could be modified in a sequence-specific manner and that conjugation of Py-Im polyamides may be useful for this purpose.

2.
Bioorg Med Chem Lett ; 27(10): 2197-2200, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389153

RESUMO

Pyrrole-imidazole (Py-Im) polyamides are useful tools for chemical biology and medicinal chemistry studies due to their unique binding properties to the minor groove of DNA. We developed a novel method of synthesizing Py-Im polyamide oligomers based on a Cu-catalyzed cross-coupling strategy. All four patterns of dimer fragments could be synthesized using a Cu-catalyzed Ullmann-type cross-coupling with easily prepared monomer units. Moreover, we demonstrated that pyrrole dimer, trimer, and tetramer building blocks for Py-Im polyamide synthesis were accessible by combining site selective iodination of the pyrrole/pyrrole coupling adduct.


Assuntos
Antineoplásicos/síntese química , Cobre/química , Imidazóis/química , Nylons/química , Pirróis/química , Antineoplásicos/química , Sítios de Ligação , Catálise , DNA/química , DNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA