Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Digit Imaging ; 35(1): 9-20, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34997376

RESUMO

Three-dimensional (3D) printing of vascular structures is of special interest for procedure simulations in Interventional Radiology, but remains due to the complexity of the vascular system and the lack of biological tissue mimicking 3D printing materials a technical challenge. In this study, the technical feasibility, accuracy, and usability of a recently introduced silicone-like resin were evaluated for endovascular procedure simulations and technically compared to a commonly used standard clear resin. Fifty-four vascular models based on twenty-seven consecutive embolization cases were fabricated from preinterventional CT scans and each model was checked for printing success and accuracy by CT-scanning and digital comparison to its original CT data. Median deltas (Δ) of luminal diameters were 0.35 mm for clear and 0.32 mm for flexible resin (216 measurements in total) with no significant differences (p > 0.05). Printing success was 85.2% for standard clear and 81.5% for the novel flexible resin. In conclusion, vascular 3D printing with silicone-like flexible resin was technically feasible and highly accurate. This is the first and largest consecutive case series of 3D-printed embolizations with a novel biological tissue mimicking material and is a promising next step in patient-specific procedure simulations in Interventional Radiology.


Assuntos
Impressão Tridimensional , Radiologia Intervencionista , Estudos de Viabilidade , Humanos , Silicones , Tomografia Computadorizada por Raios X
2.
CVIR Endovasc ; 4(1): 74, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633563

RESUMO

PURPOSE: The current literature on the use of brachial artery access is controversial. Some studies found increased puncture site complications. Others found no higher complication rates than in patients with femoral or radial access. The purpose of this study was to determine the impact of ultrasound (US)-guidance on access site complications. MATERIALS AND METHODS: This is a single-center retrospective study of all consecutive patients with brachial arterial access for interventional procedures. Complications were classified into minor complications (conservative treatment only) and major complications (requiring surgical intervention). The brachial artery was cannulated in the antecubital fossa under US-guidance. After the intervention, manual compression or closure devices, both followed by a compression bandage for 3 h, either achieved hemostasis. RESULTS: Seventy-five procedures in seventy-one patients were performed in the study period using brachial access. Access was successful in all cases (100%). Procedures in different vascular territories were performed: neurovascular (10/13.5%), upper extremity (32/43.2%), visceral (20/27.0%), and lower extremity (12/16.3%). Sheath size ranged from 3.2F to 8F (mean: 5F). Closure devices were used in 17 cases (22.7%). In total, six complications were observed (8.0%), four minor complications (5.3%, mostly puncture site hematomas), and two major complications, that needed surgical treatment (2.7%). No brachial artery thrombosis or upper extremity ischemia occurred. CONCLUSION: Exclusive use of US-guidance resulted in a low risk of brachial artery access site complications in our study compared to the literature. US-guidance has been proven to reduce the risk of access site complications in several studies in femoral access. In addition, brachial artery access yields a high technical success rate and requires no additional injection of spasmolytic medication. Sheath size was the single significant predictor for complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA