RESUMO
In the process of terahertz (THz) wave generation via optical rectification of infrared femtosecond pulses in a non-linear optical crystal, the power of terahertz wave is directly proportional to the square of the optical pump power. Therefore, high power terahertz wave can be generated using a high power femtosecond laser provided that the crystal has both high laser induced damage threshold and optical non-linear coefficient. However, a significant amount of pump power is lost in this process due to the Fresnel's reflection at the air-crystal boundary. In this paper, we numerically and experimentally demonstrate that the coat of optical thin film called Cytop on the 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) crystal effectively reduces the reflection loss of pump power, thereby increasing the THz wave emission efficiency of the DAST crystal. We found that the average power of THz wave emitted by the thin film coated crystal is about 28% higher than the THz power emitted by the uncoated crystal when an equal amount of laser power is used. The thin film coated DAST crystals can be used not only in terahertz measurement systems but also in optical devices such as modulators and waveguides.
RESUMO
Semi-clathrate hydrates are attractive heat storage materials because the equilibrium temperatures, located above 0 °C in most cases, can be changed by selecting guest cations and anions. The equilibrium temperatures are influenced by the size and hydrophilicity of guest ions, hydration number, crystal structure, and so on. This indicates that intermolecular and/or interionic interaction in the semi-clathrate hydrates may be related to the variation of the equilibrium temperatures. Therefore, intermolecular and/or interionic interaction in semi-clathrate hydrates with quaternary onium salts was directly observed using low-frequency Raman spectroscopy, a type of terahertz spectroscopy. The results show that Raman peak positions were mostly correlated with the equilibrium temperatures: in the semi-clathrate hydrates with higher equilibrium temperatures, Raman peaks around 65 cm-1 appeared at a higher wavenumber and the other Raman peaks at around 200 cm-1 appeared at a lower wavenumber. Low-frequency Raman observation is a valuable tool with which to study the equilibrium temperatures in semi-clathrate hydrates.
Assuntos
Compostos de Amônio Quaternário , Cloreto de Sódio , Compostos Organofosforados , Compostos de Amônio Quaternário/químicaRESUMO
We developed a broadband terahertz wave circular polarizer that consists of a two-dimensional (2D) array of three-dimensional metallic helices. Each helix operates in an axial mode of operation where the wavelength of resonance is comparable to the dimensions of the helix. We evaluated the performance of the polarizer using standard terahertz time domain spectroscopy, and we confirmed that the array of helices transmits a circularly polarized terahertz wave with opposite handedness as that of the helices. The polarizer covers the frequency range from 117 GHz to 208 GHz, close to one octave. We obtained the ellipticity of the circularly polarized terahertz wave close to unity in this frequency band.
RESUMO
Although many studies have investigated the phase change of water, few have focused on the sublimation of ice. This study revealed that ice sublimation can be observed using terahertz (THz) spectroscopy. From measurements in the range of 210-270 K, the sublimation was observed over the entire temperature range and the rate of sublimation was increased proportionally with temperature. Particularly on a time scale of a few hundred minutes, the sublimation progresses visibly above 250 K. Above a certain temperature, the absorption coefficient increased during sublimation. These findings suggest that an interesting phenomenon may occur in the phase change of water at sub-zero temperatures, indicating that THz spectroscopy would be useful for measuring water and ice.
RESUMO
A large unexamined second-order nonlinear optical (NLO) process is found in a 4-N,N-dimethylamino-4'-N'-methyl stilbazolium tosylate (DAST) crystal, which has a large figure of merit among NLO crystals. In second-order NLO processes using a DAST crystal, the χ111(2) process of light excitation is commonly used, involving a-axis polarized light excitation with light generation of a-axis polarized light. However, there have been few studies of other second-order NLO susceptibility processes to date. In this Letter, terahertz (THz) wave generation via second-order NLO processes based on the χ133(2) second-order NLO susceptibility of the DAST crystal was investigated. By adjusting the polarization direction of the excitation light using a prism-coupled Cerenkov phase-matching method, efficient generation of THz waves was achieved using a process involving χ133(2). The magnitude of the NLO constant χ133(2) estimated from the THz intensity ratio was 77.8 pm/V. These results indicate that prism-coupled Cherenkov phase matching can be used to identify undiscovered NLO processes for NLO crystals.
RESUMO
Terahertz time-domain spectroscopy (THz-TDS) employs a mechanical stage to introduce the time delay between pump and probe optical pulses during the sampling process of the time-domain electric field of a terahertz pulse. The positioning error and limited resolution of a mechanical delay stage cause an inaccurate sampling of a terahertz pulse. In this study, we numerically and experimentally investigated the influence of delay stage positioning error on the major characteristics of THz-TDS, such as bandwidth and dynamic range of the system, along with the signal-to-noise ratio (SNR) of the intensity spectra. We demonstrate that the positioning error in the delay stage not only reduces bandwidth and dynamic range of the measurement system but also decreases the SNR of the intensity spectra.
RESUMO
In nonlinear optical (NLO) crystals, the selection of pump light wavelengths for the generation of terahertz (THz) waves is limited due to problems associated with coherence length, refractive index, and absorption by the crystal. Relaxation of this limitation would open up potential light sources for THz generation. One such solution, Cherenkov phase matching, removes the coherence length constraint. In this study, we attempted to generate THz waves from an NLO crystal using femtosecond pulses of various wavelengths. Specifically, 805-nm and 1560-nm femtosecond pulses were used to pump a prism-coupled LiNbO3 crystal. Broadband THz-wave generation and a THz-wave output proportional to the square of the pump light intensity were observed at both wavelengths. The generation of THz waves by prism-coupled Cherenkov phase matching was not limited by the wavelength of the pump light. Moreover, THz-wave generation at even greater intensities may be possible by optimizing the pump source and coupling to an NLO crystal.
RESUMO
Cherenkov phase-matched terahertz (THz) wave generation from a MgO:LiNbO3 ridge waveguide was studied using optical rectification. Pumping was achieved using 20 and 60 fs laser pulses from a fiber laser centered at 1.56 µm. Time-domain spectroscopy (TDS) results showed a single-cycle pulse with 20 fs pulse pumping and a near-single-cycle pulse with 60 fs pulse pumping. The spectrum covered the range of 0.1-7 THz, with a signal-to-noise ratio of over 50 dB. The output power measured by a Si bolometer and a deuterated triglycine sulfate pyroelectric detector is shown and compared to that of a commercial photoconductive antenna. This system is believed to be a promising THz source for low-cost, compact, robust, and highly integrated TDS, THz imaging, and tomography systems.
RESUMO
We demonstrate a terahertz polarizer built with stacks of aligned single-walled carbon nanotubes (SWCNTs) exhibiting ideal broadband terahertz properties: 99.9% degree of polarization and extinction ratios of 10(-3) (or 30 dB) from ~0.4 to 2.2 THz. Compared to structurally tuned and fragile wire-grid systems, the performance in these polarizers is driven by the inherent anistropic absorption of SWCNTs that enables a physically robust structure. Supported by a scalable dry contact-transfer approach, these SWCNT-based polarizers are ideal for emerging terahertz applications.
Assuntos
Nanotubos de Carbono/química , Dispositivos Ópticos , Anisotropia , Membranas Artificiais , Tamanho da Partícula , Propriedades de Superfície , Espectroscopia TerahertzRESUMO
We describe a film of highly aligned single-walled carbon nanotubes that acts as an excellent terahertz linear polarizer. There is virtually no attenuation (strong absorption) when the terahertz polarization is perpendicular (parallel) to the nanotube axis. From the data, the reduced linear dichrosim was calculated to be 3, corresponding to a nematic order parameter of 1, which demonstrates nearly perfect alignment as well as intrinsically anisotropic terahertz response of single-walled carbon nanotubes in the film.
Assuntos
Nanotubos de Carbono/química , Anisotropia , Teste de Materiais , Microscopia de Polarização , Propriedades de SuperfícieRESUMO
Electron spin resonance measurement of gamma-ray-irradiated propane hydrates shows that the normal propyl radical withdraws hydrogen from the adjacent propane molecule through the hexagonal planes of the hydrate cage without water molecule bridging.
Assuntos
Hidrogênio/química , Propano/química , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Radicais Livres/efeitos da radiação , Raios gama , Hidrogênio/efeitos da radiação , Propano/efeitos da radiação , Temperatura , Fatores de Tempo , Água/químicaRESUMO
The thermal stability of gamma-ray-induced methyl radicals in methane hydrate was studied using the ESR method at atmospheric pressure and 210-260 K. The methyl radical decay proceeded with the second-order reaction, and ethane molecules were generated from the dimerization process. The methyl radical decay proceeds by two different temperature-dependent processes, that is, the respective activation energies of these processes are 20.0 +/- 1.6 kJ/mol for the lower temperature region of 210-230 K and 54.8 +/- 5.7 kJ/mol for the higher temperature region of 235-260 K. The former agrees well with the enthalpy change of methane hydrate dissociation into ice and gaseous methane, while the latter agrees well with the enthalpy change into liquid water and gaseous methane. The present findings reveal that methane hydrates dissociate into liquid (supercooled) water and gaseous methane in the temperature range of 235-260 K.
RESUMO
Natural methane hydrate under deep ocean floor in Ocean Drilling Program (ODP) Leg 164 was studied by electron spin resonance (ESR) after gamma-ray irradiation. The methyl radical (g=2.0024+/-0.0005, A=2.3+/-0.1 mT) as well as an unidentified signal was observed. Although the parameters and the thermal stability were very similar to those in a synthetic sample, the signal intensity was about one eightieth of that in synthetic one because methane hydrate had partially changed to ice. ESR signal intensity of the methyl radical after gamma-ray irradiation could be used to estimate the amount of methane hydrate in a sample mixed with ice.