Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 72(8): 2012-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18685213

RESUMO

An expression system for aqualysin I from Thermus aquaticus YT-1, a thermophilic serine protease belonging to the proteinase K family, in Escherichia coli is available, but the efficiency of production has been rather low for detailed analysis of the product. We developed a maltose biding protein (MBP)-fused proaqualysin I expression plasmid (pMAQ-c2Delta) in which MBP is attached to the N-terminus of proaqualysin I. MBP appeared effectively to suppress the folding-promoting activity of the N-terminal propeptide when the bacteria were grown at 30 degrees C, leading to a massive accumulation of fusion aqualysin I precursor. The precursor was converted efficiently to mature aqualysin I by heat treatment at 70 degrees C, enabling us to obtain 40 times more aqualysin I than is available using expression systems such as pAQNDeltaC105. By analyzing the product of the pMAQ-c2Delta-derived inactive mutant expression vector, pMAQ-S222A, it was confirmed that aqualysin I was initially expressed as a whole fusion protein and then processed autocatalytically.


Assuntos
Escherichia coli/enzimologia , Expressão Gênica/genética , Serina Endopeptidases/metabolismo , Escherichia coli/genética , Plasmídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/isolamento & purificação
2.
J Biochem ; 143(5): 625-32, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18216068

RESUMO

A thermophilic serine protease, Aqualysin I, from Thermus aquaticus YT-1 has two disulphide bonds, which are also found in a psychrophilic serine protease from Vibrio sp. PA-44 and a proteinase K-like enzyme from Serratia sp. at corresponding positions. To understand the significance of these disulphide bonds in aqualysin I, we prepared mutants C99S, C194S and C99S/C194S (WSS), in which Cys69-Cys99, Cys163-Cys194 and both of these disulphide bonds, respectively, were disrupted by replacing Cys residues with Ser residues. All mutants were expressed stably in Escherichia coli. The C99S mutant was 68% as active as the wild-type enzyme at 40 degrees C in terms of k(cat) value, while C194S and WSS were only 6 and 3%, respectively, as active, indicating that disulphide bond Cys163-Cys194 is critically important for maintaining proper catalytic site conformation. Mutants C194S and WSS were less thermostable than wild-type enzyme, with a half-life at 90 degrees C of 10 min as compared to 45 min of the latter and with transition temperatures on differential scanning calorimetry of 86.7 degrees C and 86.9 degrees C, respectively. Mutant C99S was almost as stable as the wild-type aqualysin I. These results indicate that the disulphide bond Cys163-Cys194 is more important for catalytic activity and conformational stability of aqualysin I than Cys67-Cys99.


Assuntos
Proteínas de Bactérias/química , Cistina/química , Serina Endopeptidases/química , Thermus/enzimologia , Proteínas de Bactérias/genética , Caseínas/metabolismo , Estabilidade Enzimática , Mutação , Serina Endopeptidases/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA