Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Protoc Protein Sci ; 101(1): e113, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32882112

RESUMO

Glycosylated proteins, namely glycoproteins and proteoglycans (collectively called glycoconjugates), are indispensable in a variety of biological processes. The functions of many glycoconjugates are regulated by their interactions with another group of proteins known as lectins. In order to understand the biological functions of lectins and their glycosylated binding partners, one must obtain these proteins in pure form. The conventional protein purification methods often require long times, elaborate infrastructure, costly reagents, and large sample volumes. To minimize some of these problems, we recently developed and validated a new method termed capture and release (CaRe). This method is time-saving, precise, inexpensive, and it needs a relatively small sample volume. In this approach, targets (lectins and glycoproteins) are captured in solution by multivalent ligands called target capturing agents (TCAs). The captured targets are then released and separated from their TCAs to obtain purified targets. Application of the CaRe method could play an important role in discovering new lectins and glycoconjugates. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of crude extracts containing the target proteins from soybean flour Alternate Protocol 1: Preparation of crude extracts from Jack bean meal Alternate Protocol 2: Preparation of crude extracts from the corms of Colocasia esculenta, Xanthosoma sagittifolium, and from the bulbs of Allium sativum Alternate Protocol 3: Preparation of Escherichia coli cell lysates containing human galectin-3 Alternate Protocol 4: Preparation of crude extracts from chicken egg whites (source of ovalbumin) Basic Protocol 2: Preparation of 2% (v/v) red blood cell suspension Basic Protocol 3: Detection of lectin activity of the crude extracts Basic Protocol 4: Identification of multivalent inhibitors as target capturing agents by hemagglutination inhibition assays Basic Protocol 5: Testing the capturing abilities of target capturing agents by precipitation/turbidity assays Basic Protocol 6: Capturing of targets (lectins and glycoproteins) in the crude extracts by target capturing agents and separation of the target-TCA complex from other components of the crude extracts Basic Protocol 7: Releasing the captured targets (lectins and glycoproteins) by dissolving the complex Basic Protocol 8: Separation of the targets (lectins and glycoproteins) from their respective target capturing agents Basic Protocol 9: Verification of the purity of the isolated targets (lectins or glycoproteins).


Assuntos
Galectina 3/isolamento & purificação , Glicoconjugados/isolamento & purificação , Testes de Inibição da Hemaglutinação/normas , Testes de Hemaglutinação/normas , Proteoglicanas/isolamento & purificação , Animais , Proteínas Sanguíneas , Bovinos , Eletroforese em Gel de Poliacrilamida/métodos , Eritrócitos/química , Eritrócitos/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Filtração/métodos , Farinha/análise , Galectina 3/química , Galectina 3/genética , Galectina 3/metabolismo , Galectinas , Glicoconjugados/química , Glicosilação , Humanos , Ligação Proteica , Proteoglicanas/química , Coelhos , Glycine max/química , Tireoglobulina/farmacologia , Xanthosoma/química
2.
J Biol Chem ; 295(1): 223-236, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31792056

RESUMO

Glycan-binding proteins such as lectins are ubiquitous proteins that mediate many biological functions. To study their various biological activities and structure-function relationships, researchers must use lectins in their purest form. Conventional purification techniques, especially affinity column chromatography, have been instrumental in isolating numerous lectins and glycoproteins. These approaches, however, are time-consuming, consist of multiple steps, and often require extensive trial-and-error experimentation. Therefore, techniques that are relatively rapid and facile are needed. Here we describe such a technique, called capture and release (CaRe). The strength of this approach is rooted in its simplicity and accuracy. CaRe purifies lectins by utilizing their ability to form spontaneous noncovalently cross-linked complexes with specific multivalent ligands. The lectins are captured in the solution phase by multivalent capturing agents, released by competitive monovalent ligands, and then separated by filtration. CaRe does not require antibodies, solid affinity matrices, specialized detectors, a customized apparatus, controlled environments, or functionalization or covalent modification of reagents. CaRe is a time-saving procedure that can purify lectins even from a few milliliters of crude protein extracts. We validated CaRe by purifying recombinant human galectin-3 and five other known lectins and also tested CaRe's ability to purify glycoproteins. Besides purifying lectins and glycoproteins, CaRe has the potential to purify other glycoconjugates, including proteoglycans. This technique could also be used for nonlectin proteins that bind multivalent ligands. Given the ubiquity of glycosylation in nature, we anticipate that CaRe has broad utility.


Assuntos
Cromatografia em Gel/métodos , Reagentes de Ligações Cruzadas/química , Glicoproteínas/química , Lectinas/química , Proteínas de Plantas/química , Araceae/química , Humanos , Ligantes , Proteínas Recombinantes/química , Glycine max/química
3.
Biochemistry ; 55(32): 4541-51, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27427828

RESUMO

Glycosaminoglycan (GAG) binding proteins (GAGBPs), including growth factors, cytokines, morphogens, and extracellular matrix proteins, interact with both free GAGs and those covalently linked to proteoglycans. Such interactions modulate a variety of cellular and extracellular events, such as cell growth, metastasis, morphogenesis, neural development, and inflammation. GAGBPs are structurally and evolutionarily unrelated proteins that typically recognize internal sequences of sulfated GAGs. GAGBPs are distinct from the other major group of glycan binding proteins, lectins. The multifunctional human galectin-3 (Gal-3) is a ß-galactoside binding lectin that preferentially binds to N-acetyllactosamine moieties on glycoconjugates. Here, we demonstrate through microcalorimetric and spectroscopic data that Gal-3 possesses the characteristics of a GAGBP. Gal-3 interacts with unmodified heparin, chondroitin sulfate-A (CSA), -B (CSB), and -C (CSC) as well as chondroitin sulfate proteoglycans (CSPGs). While heparin, CSA, and CSC bind with micromolar affinity, the affinity of CSPGs is nanomolar. Significantly, CSA, CSC, and a bovine CSPG were engaged in multivalent binding with Gal-3 and formed noncovalent cross-linked complexes with the lectin. Binding of sulfated GAGs was completely abolished when Gal-3 was preincubated with ß-lactose. Cross-linking of Gal-3 by CSA, CSC, and the bovine CSPG was reversed by ß-lactose. Both observations strongly suggest that GAGs primarily occupy the lactose/LacNAc binding site of Gal-3. Hill plot analysis of calorimetric data reveals that the binding of CSA, CSC, and a bovine CSPG to Gal-3 is associated with progressive negative cooperativity effects. Identification of Gal-3 as a GAGBP should help to reveal new functions of Gal-3 mediated by GAGs and proteoglycans.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Galectina 3/metabolismo , Glicosaminoglicanos/metabolismo , Amino Açúcares/química , Amino Açúcares/metabolismo , Animais , Sítios de Ligação , Bovinos , Dermatan Sulfato/metabolismo , Relação Dose-Resposta a Droga , Galectina 3/química , Heparina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactose/metabolismo , Ligação Proteica/efeitos dos fármacos , Cloreto de Sódio/farmacologia
4.
Methods Enzymol ; 567: 71-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794351

RESUMO

Multivalent glycoconjugate-protein interactions are central to many important biological processes. Isothermal titration calorimetry (ITC) can potentially reveal the molecular and thermodynamic basis of such interactions. However, calorimetric investigation of multivalency is challenging. Binding of multivalent glycoconjugates to proteins (lectins) often leads to a stoichiometry-dependent precipitation process due to noncovalent cross-linking between the reactants. Precipitation during ITC titration severely affects the quality of the baseline as well as the signals. Hence, the resulting thermodynamic data are not dependable. We have made some modifications to address this problem and successfully studied multivalent glycoconjugate binding to lectins. We have also modified the Hill plot equation to analyze high quality ITC raw data obtained from multivalent binding. As described in this chapter, ITC-driven thermodynamic parameters and Hill plot analysis of ITC raw data can provide valuable information about the molecular mechanism of multivalent lectin-glycoconjugate interactions. The methods described herein revealed (i) the importance of functional valence of multivalent glycoconjugates, (ii) that favorable entropic effects contribute to the enhanced affinities associated with multivalent binding, (iii) that with the progression of lectin binding, the microscopic affinities of the glycan epitopes of a multivalent glycoconjugate decrease (negative cooperativity), (iv) that lectin binding to multivalent glycoconjugates, especially to mucins, involves internal diffusion jumps, (bind and jump) and (v) that scaffolds of glycoconjugates influence their entropy of binding.


Assuntos
Calorimetria/métodos , Entropia , Ligação Proteica , Termodinâmica
5.
Thyroid ; 25(12): 1339-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26421933

RESUMO

BACKGROUND: Thyroglobulin (Tg), the major thyroidal protein, plays important roles in thyroid hormone biosynthesis and in autoimmune thyroid diseases (AITD). Tg also serves as a pre- and postoperative biomarker of differentiated thyroid cancer (DTC). The endogenous ß-galactoside binding lectin galectin-3 (Gal-3), secreted by transformed thyroid cells, has been shown to be another useful biomarker of DTC. Tg contains covalently linked complex-type glycans that can serve as binding epitopes of Gal-3. The objective of the study is to investigate the interaction between Tg and Gal-3 and discuss its potential consequences. METHODS: Binding interaction between Tg and Gal-3 was first studied by hemagglutination inhibition assays. Subsequently, a detailed analysis of binding thermodynamics was carried out by isothermal titration calorimetry. Quantitative precipitation was performed to study the complex formation between Tg and Gal-3 and to determine the binding stoichiometry. The concentration-dependent rate and amount of complex formation between Tg and Gal-3 was examined spectrophotometrically. A similar approach was taken to study the effect of free Tg and Gal-3 on preformed Tg-Gal-3 complex. RESULTS: Quantitative biochemical and biophysical data show that these two biomarkers produced by thyroid cancer cells interact with each other with submicromolar affinity and form an insoluble complex at their stoichiometric concentration. One Tg molecule could bind up to 14 molecules of Gal-3. Such complex formation mutually sequestered both Tg and Gal-3, decreasing the concentration of their freely available forms. Formation of the Tg-Gal-3 complex was reversible as the preformed complex was dissolved by free Tg as well as free Gal-3. While free Tg rapidly dissolved preformed Tg-Gal-3 complex in a concentration-dependent manner, Gal-3 was found to be much less efficient and slowly dissolved only a fraction of the preformed complex at a relatively higher Gal-3 concentration. CONCLUSIONS: Complex formation between Tg and Gal-3 through high affinity binding and the sensitivity of the complex to free Tg and Gal-3 can potentially influence their biological functions. Interactions between Tg and Gal-3 might also interfere with their clinical detection, the same way Tg autoantibody (TgAb) is reported to interfere with Tg assays. The data support a model of Gal-3-mediated homeostatic process of Tg.


Assuntos
Biomarcadores Tumorais/metabolismo , Galectina 3/metabolismo , Polissacarídeos/metabolismo , Tireoglobulina/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Calorimetria , Precipitação Química , Testes de Inibição da Hemaglutinação , Humanos , Ligação Proteica , Termodinâmica
6.
Biochemistry ; 53(27): 4445-54, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24950232

RESUMO

The glycan epitopes of natural and synthetic glycoconjugates exist as covalent attachments of well-defined inner structures or scaffolds. Macromolecules such as proteins, peptides, lipids, and saccharides and synthetic structures serve as scaffolds of glycoconjugates. It is generally perceived that the biological activities of glycoconjugates are determined mainly by the attached glycans, while the seemingly inert inner scaffolds play a passive role by providing physical support to the attached glycan epitopes. However, our data show that scaffolds actively influence lectin recognition and can potentially modulate lectin-mediated signaling properties of glycoconjugates. Through in vitro experiments, we found that the scaffolds significantly altered the thermodynamic binding properties of the covalently attached glycan epitopes. When a free glycan was attached to a scaffold, its lectin binding entropy became more positive. The level of positive entropic gain was dependent on the types of scaffolds tested. For example, protein scaffolds of glycoproteins were found to generate more positive entropy of binding than synthetic scaffolds. Certain scaffolds were found to have limiting effects on glycoconjugate affinity. We also found that scaffold-bearing glycans with a similar affinity or an identical valence demonstrated different kinetics of lattice formation with lectins, when the scaffold structures were different. Our data support the view that scaffolds of glycoconjugates (i) help the covalently attached glycans become more spontaneous in lectin binding and (ii) help diversify the lattice forming or cross-linking properties of glycoconjugates.


Assuntos
Concanavalina A/química , Glicoproteínas/química , Manose/análogos & derivados , Manose/química , Oligossacarídeos/química , Reagentes de Ligações Cruzadas/química , Dendrímeros/química , Cinética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA