Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cancer Cell Int ; 23(1): 271, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951913

RESUMO

Recent developments in sequencing technology and analytical approaches have allowed researchers to show that the healthy gut microbiome is very varied and capable of performing a wide range of tasks. The importance of gut microbiota in controlling immunological, neurological, and endocrine function is becoming well-recognized. Thereby, numerous inflammatory diseases, including those that impact the gastrointestinal system, as well as less obvious ones, including Rheumatoid arthritis (RA), cancer, gestational diabetes (GD), type 1 diabetes (T1D), and type 2 diabetes (T2D), have been linked to dysbiotic gut microbiota. Microbiome engineering is a rapidly evolving frontier for solutions to improve human health. Microbiome engineering seeks to improve the function of an ecosystem by manipulating the composition of microbes. Thereby, generating potential therapies against metabolic, inflammatory, and immunological diseases will be possible through microbiome engineering. This essay first provides an overview of the traditional technological instruments that might be used for microbiome engineering, such as Fecal Microbiota Transplantation (FMT), prebiotics, and probiotics. Moreover, we will also discuss experimental genetic methods such as Metagenomic Alteration of Gut microbiome by In situ Conjugation (MAGIC), Bacteriophage, and Conjugative plasmids in manipulating intestinal microbiota.

3.
Biomed Pharmacother ; 165: 115054, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37379642

RESUMO

Ecological air contamination is the non-homogenous suspension of insoluble particles into gas or/and liquid fluids known as particulate matter (PM). It has been discovered that exposure to PM can cause serious cellular defects, followed by tissue damage known as cellular stress. Apoptosis is a homeostatic and regulated phenomenon associated with distinguished physiological actions inclusive of organ and tissue generation, aging, and development. Moreover, it has been proposed that the deregulation of apoptotic performs an active role in the occurrence of many disorders, such as autoimmune disease, neurodegenerative, and malignant, in the human population. Recent studies have shown that PMs mainly modulate multiple signaling pathways involved in apoptosis, including MAPK, PI3K/Akt, JAK/STAT, NFκB, Endoplasmic Stress, and ATM/P53, leading to apoptosis dysregulation and apoptosis-related pathological conditions. Here, the recently published data concerning the effect of PM on the apoptosis of various organs, with a particular focus on the importance of apoptosis as a component in PM-induced toxicity and human disease development, is carefully discussed. Moreover, the review also highlighted the various therapeutic approaches, including small molecules, miRNA replacement therapy, vitamins, and PDRN, for treating diseases caused by PM toxicity. Notably, researchers have considered medicinal herbs a potential treatment for PM-induced toxicity due to their fewer side effects. So, in the final section, we analyzed the performance of some natural products for inhibition and intervention of apoptosis arising from PM-induced toxicity.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/efeitos adversos , Poluentes Atmosféricos/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Transdução de Sinais
4.
Diabetes Res Clin Pract ; 201: 110739, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37270071

RESUMO

Humans have a complicated symbiotic relationship with their gut microbiome, which is postulated to impact host health and disease broadly. Epigenetic alterations allow host cells to regulate gene expression without altering the DNA sequence. The gut microbiome, offering environmental hints, can influence responses to stimuli by host cells with modifications on their epigenome and gene expression. Recent increasing data suggest that regulatory non-coding RNAs (miRNAs, circular RNAs, and long lncRNA) may affect host-microbe interactions. These RNAs have been suggested as potential host response biomarkers in microbiome-associated disorders, including diabetes and cancer. This article reviews the current understanding of the interplay between gut microbiota and non-coding RNA, including lncRNA, miRNA, and circular RNA. This can lead to a profound understanding of human disease and influence therapy. Furthermore, microbiome engineering as a mainstream strategy for improving human health has been discussed and confirms the hypothesis about a direct cross-talk between microbiome composition and non-coding RNA.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Microbiota , RNA Longo não Codificante , Humanos , Microbioma Gastrointestinal/genética , RNA Longo não Codificante/genética
5.
Cell Signal ; 101: 110525, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400383

RESUMO

MicroRNAs (miRNAs), small non-coding RNAs approximately 20-25 nt in length, play important roles via directly binding to the corresponding 3' UTR of target mRNAs. Recent research has shown that miRNAs cover a wide range of diseases, including several types of cancer. It is interesting to note that miR-206 operates as a tumor suppressor and is downregulated in abundant cancer types, such as breast cancer, lung cancer, colorectal cancer, and so forth. Interestingly, a growing number of studies have also reported that miR-206 could function as an oncogene and promote tumor cell proliferation. Thereby, miR-206 may act as either oncogenes or tumor suppressors under certain conditions. In addition, it was widely acknowledged that restoring tumor-suppressor miR-206 has emerged as an unconventional cancer therapy strategy. Therefore, miR-206 might be a newfangled procedure for achieving a more significant treatment outcome for cancer patients. This review summarizes the role of miR-206 in several cancer types and the contributions made between miR-206 and the diagnosis, treatment, and drug resistance of solid tumors.


Assuntos
MicroRNAs , Neoplasias , Humanos , Proliferação de Células/genética , MicroRNAs/genética , Oncogenes , Neoplasias/genética
6.
Cell Signal ; 101: 110504, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309329

RESUMO

Cancer is a general term for more than 100 unique malignancies in different organs of the body. Each cancer type and subtype has its own unique genetic, epigenetic, and cellular factors accountable for malignant progression and metastasis. Small non-coding RNAs called miRNAs target mRNAs and play a vital part in the pathogenesis of human diseases, specifically cancer. Recent investigations provided knowledge of the deregulation of miR-211 in various cancer types and disclosed that miR-211 has an oncogenic or tumor-suppressive impact on tumourigenesis and cancer development. Moreover, recent discoveries which clarify the essential functions of miR-211 might provide proof for its prognosis, diagnostic and therapeutic impact on cancer. Thereby, this review will discuss recent findings regarding miR-211 expression level, target genes, and mechanisms in different cancers. In addition, the most recent results that propose miR-211 usefulness as a noninvasive biomarker and therapeutic factor for the diagnosis and treatment of cancer will be explained.


Assuntos
MicroRNAs , Neoplasias , Humanos , Genes Supressores de Tumor , Neoplasias/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Oncogenes , Carcinogênese/genética
7.
Int J Biol Macromol ; 222(Pt A): 1538-1550, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152703

RESUMO

The recently developed pathogenic virus, SARS-CoV-2, was found in the Hubei Province, China. Giving rise to a broad spectrum of symptoms, SARS-CoV-2 rapidly spread across the globe, causing multi-systemic and dangerous complications, with death in extreme cases. Thereby, the number of research cases increases every day on preventing infection and treating its resulting damage. Accumulating evidence suggests noncoding RNAs (ncRNAs) are necessary for modifying virus infection and antiviral immune reaction, along with biological processes regulating SARS-CoV-2 and subsequent disease states. Therefore, understanding these mechanisms might provide a further understanding of the pathogenesis and feasible therapy alternatives against SARS-CoV2. Consequently, the molecular biology of SARS-CoV-2, ncRNA's role in its infection, and various RNA therapy tactics against the virus have been presented in this review section.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , RNA Viral/genética , Antivirais/uso terapêutico , RNA não Traduzido/genética
8.
Int J Reprod Biomed ; 19(2): 157-166, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33718760

RESUMO

BACKGROUND: Surgery and chemotherapy are the two most common treatments for cancers, including ovarian cancer. Although most ovarian cancers occur over the age of 45 yr, it may involve younger women and affect their reproductive ability. OBJECTIVE: To assess the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), Forkhead Box O1 (FOXO1), and miR-340 genes in the ovarian cancer tissues as well as ovarian cancer cell lines. MATERIALS AND METHODS: In this case-control study, 30 ovarian cancer samples (with the average age of 37 ± 2.5 years) coupled with their non-tumor marginal tissue (as a control) were collected. Proliferated cell lines were treated with several concentrations of cisplatin, and the half maximal inhibitory concentration (IC50) of cisplatin was quantified by MTT-assay. After RNA extraction, cDNA synthesis and qRT-PCR were done. Finally, the results were analyzed. RESULTS: While the expression levels of miR-340 and FOXO1 genes in tumor samples displayed a significant reduction (p ≤ 0.001), the LGR5 gene presented a significant increase in expression (p ≤ 0.0001). However, conversely, the expression levels of miR-340 and FOXO1 genes in cisplatin-sensitive cell lines, after 24, 48, and 72 hr of cisplatin treatment, indicated a significant increase (p ≤ 0.001) while the expression of LGR5 gene showed a significant decrease in the cisplatin-sensitive cell line (p < 0.05). CONCLUSION: The LGR5, FOXO1, and miR-340 genes can be targeted for early diagnosis and more accurate treatment of ovarian cancer and may prevent some of the ovarian cancer complications such as infertility.

9.
Cancer Inform ; 19: 1176935120942216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32728337

RESUMO

Genetic variations such as single nucleotide polymorphisms (SNPs) can cause susceptibility to cancer. Although thousands of genetic variants have been identified to be associated with different cancers, the molecular mechanisms of cancer remain unknown. There is not a particular dataset of relationships between cancer and SNPs, as a bipartite network, for computational analysis and prediction. Link prediction as a computational graph analysis method can help us to gain new insight into the network. In this article, after creating a network between cancer and SNPs using SNPedia and Cancer Research UK databases, we evaluated the computational link prediction methods to foresee new SNP-Cancer relationships. Results show that among the popular scoring methods based on network topology, for relation prediction, the preferential attachment (PA) algorithm is the most robust method according to computational and experimental evidence, and some of its computational predictions are corroborated in recent publications. According to the PA predictions, rs1801394-Non-small cell lung cancer, rs4880-Non-small cell lung cancer, and rs1805794-Colorectal cancer are some of the best probable SNP-Cancer associations that have not yet been mentioned in any published article, and they are the most probable candidates for additional laboratory and validation studies. Also, it is feasible to improve the predicting algorithms to produce new predictions in the future.

10.
Med J Islam Repub Iran ; 34: 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617267

RESUMO

Background: Diabetes mellitus (DM) is a growing epidemic metabolic syndrome, which affects near 5.6% of the world's population. Almost 12% of health expenditure is dedicated to this disorder. Discovering and developing biomarkers as a practical guideline with high specificity and sensitivity for the diagnosis, prognosis, and clinical management of DM is one of the subjects of great interest among DM researchers due to the long-lasting asymptomatic clinical manifestation of DM. In this study, we described a recently identified molecular biomarker involved in DM. Methods: This review study was done at the Diabetes Research Center affiliated to Shahid Sadoughi University of Medical Sciences. PubMed, Scopus, Google Scholar, and Web of Science were searched using the following keywords: "diabetes mellitus", "biomarker", "microRNA", "diagnostic tool" and "clinical manifestation." Results: A total of 107 studies were finally included in this review. After evaluating numerous articles, including original, metaanalysis, and review studies, we focused on molecular biomarkers involved in DM diagnosis and management. Conclusion: Increasing interest in biomarkers associated with DM goes back to its role in decreasing diabetes-related morbidity and mortality. This review focused on major molecular biomarkers such as proteomic and microRNA (miRNAs) as novel and interesting DM biomarkers that can help achieve timely diagnosis of DM.

11.
Clin Exp Reprod Med ; 47(1): 61-67, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32146775

RESUMO

OBJECTIVE: In this study, specimens from testicular biopsies of men with nonobstructive azoospermia (NOA) were used to investigate whether RNF8 gene could serve as a biomarker to predict the presence of sperm in these patients. METHODS: Testicular biopsy specimens from 47 patients were classified according to the presence of sperm (positive vs. negative groups) and investigated for the expression of RNF8. The level of RNF8 gene expression in the testes was compared between these groups using reverse-transcription polymerase chain reaction. RESULTS: The expression level of RNF8 was significantly higher in testicular samples from the positive group than in those from the negative group. Moreover, the area under the curve of RNF8 expression for the entire study population was 0.84, showing the discriminatory power of RNF8 expression in differentiating between the positive and negative groups of men with NOA. A receiver operating characteristic curve analysis showed that RNF8 expression had a sensitivity of 81% and a specificity of 84%, with a cutoff level of 1.76. CONCLUSION: This study points out a significant association between the expression of RNF8 and the presence of sperm in NOA patients, which suggests that quantified RNF8 expression in testicular biopsy samples may be a valuable biomarker for predicting the presence of spermatozoa in biopsy samples.

12.
Am J Med Genet A ; 182(5): 957-961, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32162791

RESUMO

Warburg Micro syndrome and Martsolf syndrome are phenotypically overlapping autosomal recessive conditions characterized by multiple organ abnormalities involving the ocular, nervous, and endocrine systems. Warburg Micro syndrome, the more severe of the two conditions, is caused by loss of function mutations in RAB3GAP1, RAB3GAP2, RAB18, and TBC1D20 genes, whereas Martsolf syndrome has been attributed to less damaging mutations in RAB3GAP1 and RAB3GAP2 genes. We report the clinical description and molecular characterization of a consanguineous Iranian family with two siblings, a male and a female, with dysmorphic features, bilateral congenital cataracts, optic nerve atrophy, congenital glaucoma, mild to moderate intellectual disability, seizures, hypogonadism, and mild osteoporosis. Spastic quadriplegia with contractures was observed in the male patient, while the female patient showed only mild hyperreflexia. Magnetic resonance imaging scans performed in the male patient showed a normal brain structure. Both siblings had neither microcephaly nor postnatal growth retardation. Whole exome sequencing identified a novel homozygous nonsense mutation [c.1060C>T; p.(Arg354Ter)] in the TBC1D20 gene in both siblings and confirmed the heterozygous carrier status of both parents. This report describes a novel mutation in the TBC1D20 gene in two Iranian patients with Martsolf syndrome, further extending the allelic heterogeneity and phenotypic spectrum of this rare condition. The genotype and phenotype of the patients are compared with those of Martsolf syndrome and Warburg Micro syndrome patients reported in the literature.


Assuntos
Anormalidades Múltiplas/genética , Catarata/congênito , Córnea/anormalidades , Hipogonadismo/genética , Deficiência Intelectual/genética , Microcefalia/genética , Atrofia Óptica/genética , Proteínas rab1 de Ligação ao GTP/genética , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/patologia , Adulto , Catarata/epidemiologia , Catarata/genética , Catarata/patologia , Criança , Córnea/patologia , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Hipogonadismo/epidemiologia , Hipogonadismo/patologia , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/patologia , Irã (Geográfico)/epidemiologia , Masculino , Microcefalia/epidemiologia , Microcefalia/patologia , Mutação/genética , Atrofia Óptica/epidemiologia , Atrofia Óptica/patologia , Linhagem , Fenótipo , Sequenciamento do Exoma
13.
Endocrinol Diabetes Nutr (Engl Ed) ; 67(7): 454-460, 2020.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-31948856

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder whose prevalence is rising very fast across the world. Diagnosis of this disease in early stages (pre-diabetic stage) plays an important role in reducing mortality associated with this disorder. miRNAs, as key players in the pathogenesis of T2DM, have been investigated in several studies. Furthermore, their expression profile changes in the early stages of diabetes mellitus in body fluids such as serum, peripheral blood, and peripheral blood mononuclear cell (PBMC) have been studied. Due to their high stability and the presence of non-invasive sensitive methods for their measurement, such as real-time PCR, they can be used for early diagnosis of T2DM as a biomarker. In this experimental study, the expression levels of miR-181b, miR-126-5p, and NF-κB were measured in patients with T2DM, pre-diabetic subjects, and healthy controls in a Yazd population. MATERIAL AND METHOD: Ninety asymptomatic subjects including 30 T2DM, 30 pre-diabetic, and 30 healthy subjects (diagnosis based on WHO criteria) were included in this study. Real-time PCR was used to measure the expression levels of miR-181b and miR-126-5p. Moreover, the NF-κB expression level was also measured to determine its relationship with these two microRNAs. RESULT: In this study, the expression level of miR-181b and miR-126-p decreased gradually in pre-diabetic as well as T2DM subjects compared to healthy controls. Furthermore, our study showed a significant negative correlation between these two miRNAs and NF-κB for the first time. CONCLUSION: These results introduce these anti-inflammatory miRNAs as powerful tools for early diagnosis of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/genética , Expressão Gênica , MicroRNAs/genética , NF-kappa B/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Int J Reprod Biomed ; 17(5)2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31435610

RESUMO

BACKGROUND: Carbamoyl phosphate synthetase 1 (CPS1) is a liver-specific enzyme with the lowest enzymatic rate, which determines the overall rate of the other reactions in the pathway that converts ammonia to carbamoyl phosphate in the first step of the urea cycle. Carbamoyl phosphate synthetase 1 deficiency (CPS1D), which usually presents as lethal hyperammonemia, is a rare autosomal recessive hereditary disease. CASE: We report a case of a two-day-old female neonate with lethal hyperammonemia. The newborn infant was presented with hyperammonemia (34.7 µ g/ml; reference range 1.1-1.9). In Plasma amino acid analysis, there was a significant elevated levels of alanine (3,004 µ mol/L; reference range, 236-410 µ mol/L), glutamine (2,256 µ mol/L; reference range, 20-107 µ mol/L), asparagine (126 µ mol/L; reference range, 30-69 µ mol/L), glutamic acid (356 µ mol/L; reference range, 14-192 µ mol/L), aspartic acid (123 µ mol/L; reference range, 0-24 µ mol/L), and lysine (342 µ mol/L; reference range, 114-269 µ mol/L). We cannot diagnose the urea cycle disorder (UCD) CPS1D properly only based on the quantity of biochemical intermediary metabolites to exclude other UCDs with similar symptoms. Following next generation sequencing determined one homozygous mutation in CPS1 gene and also this mutation was determined in her parents. The identified mutation was c.2758G > C; p.Asp920His, in the 23 exon of CPS1. This novel homozygous mutation had not been reported previously. CONCLUSION: We applied whole exome sequencing successfully to diagnose the patient with CPS1D in a clinical setting. This result supports the clinical applicability of whole exome sequencing for cost-effective molecular diagnosis of UCDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA