Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3418, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341451

RESUMO

In recent years, microscopy has revolutionized the study of dynamic living cells. However, performing long-term live cell imaging requires stable environmental conditions such as temperature, pH, and humidity. While standard incubators have traditionally provided these conditions, other solutions, like stagetop incubators are available. To further enhance the accessibility of stable cell culture environments for live cell imaging, we developed a portable CO2 cell culture mini-incubator that can be easily adapted to any x-y inverted microscope stage, enabling long-term live cell imaging. This mini-incubator provides and maintains stable environmental conditions and supports cell viability comparable to standard incubators. Moreover, it allows for parallel experiments in the same environment, saving both time and resources. To demonstrate its functionality, different cell lines (VERO and MDA-MB-231) were cultured and evaluated using various assays, including crystal violet staining, MTT, and flow cytometry tests to assess cell adhesion, viability, and apoptosis, respectively. Time-lapse imaging was performed over an 85-h period with MDA-MB-231 cells cultured in the mini-incubator. The results indicate that this device is a viable solution for long-term imaging and can be applied in developmental biology, cell biology, and cancer biology research where long-term time-lapse recording is required.


Assuntos
Dióxido de Carbono , Técnicas de Cultura de Células , Imagem com Lapso de Tempo , Técnicas de Cultura de Células/métodos , Incubadoras , Linhagem Celular
2.
Bioelectromagnetics ; 45(2): 33-47, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37789661

RESUMO

Uninterrupted microscopic observation and real-time imaging of cell behavior during exposure to the stimulus, for example, electric and/or magnetic fields, especially for periods of several days, has been a challenge in experimental bioelectromagnetics due to a lack of proper gas/temperature conditions outside the incubator. Conventional mini-incubators might suffer from stray fields produced by heating elements. We report an in vitro electric and magnetic fields (EMF) exposure system embedded inside a novel under-the-microscope mini-CO2 -incubator with a unique design to avoid electromagnetic interference from the heating and circulation functions while ensuring the requisite temperature. A unique, reconfigurable array of electrodes and/or coils excited by calculated current distributions among array elements is designed to provide excellent field uniformity and controllable linear or circular polarization (even at very low frequencies) of the EMF within the cell culture. Using standard biochemical assays, long-term cell viability has been verified and compared with a conventional incubator. Cell orientation/migration in three-dimensional culture made of collagen-hydrogels has been successfully observed in vitro, in long-term, and in real-time under the influence of DC electric fields with the device.


Assuntos
Campos Eletromagnéticos , Campos Magnéticos , Incubadoras , Temperatura , Eletricidade
3.
Sci Rep ; 12(1): 17080, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224267

RESUMO

The coronavirus disease caused by the SARS-CoV-2 virus has affected people worldwide for more than two years. Here we present a new diagnostic method based on nonlinear dielectric spectroscopy to detect the presence of the SARS-CoV-2 virus in swab samples. A known current is injected into the virus sample suspension, and the biomarker is the third harmonic detected in the power spectrum of the recorded signal. Computational modeling of harmonic production supports the hypothesis of ion channels (the E-protein) with nonlinear current-voltage characteristics being present on the virus envelope as a possible origin of harmonics. The developed system is able to distinguish between positive and negative samples with 5-10 dBc (decibels relative to the carrier) higher third harmonic ratios in positive samples, in agreement with the computational estimation. Our early results demonstrate that this method can detect the virus in solution. This is the first time harmonic signatures are used to detect SARS-CoV-2 in swab samples.


Assuntos
Técnicas Biossensoriais , COVID-19 , COVID-19/diagnóstico , Espectroscopia Dielétrica , Humanos , SARS-CoV-2 , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA