Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(34): 10465-10477, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35973231

RESUMO

Controlling droplet breakup characteristics such as size, frequency, regime, and droplet quality within flow-focusing microfluidic devices is critical for different biomedical applications of droplet microfluidics such as drug delivery, biosensing, and nanomaterial preparation. The development of a prediction platform capable of forecasting droplet breakup characteristics can significantly improve the iterative design and fabrication processes required for achieving desired performance. The present study aims to develop a multipurpose platform capable of predicting the working conditions of user-specific droplet size and frequency and reporting the quality of the generated droplets, regime, and hydrodynamical breakup characteristics in flow-focusing microdevices with different cross-junction tilt angles. Four different neural network-based prediction platforms were compared to accurately estimate capsule size, generation rate, uniformity, and circle metric. The trained capsule size and frequency networks were optimized using the heuristic optimization approach for establishing the Pareto optimal solution plot. To investigate the transition of the droplet generation regime (i.e., squeezing, dripping, and jetting), two different classification models (LDA and MLP) were developed and compared in terms of their prediction accuracy. The MLP model outperformed the LDA model with a cross-validation measure evaluated as 97.85%, demonstrating that the droplet quality and regime prediction models can provide an engineering judgment for the decision maker to choose between the suggested solutions on the Pareto front. The study followed a comprehensive hydrodynamical analysis of the junction angle effect on the dispersed thread formation, pressure, and velocity domains in the orifice.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Aprendizado de Máquina
2.
Front Bioeng Biotechnol ; 10: 878398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35519621

RESUMO

The advancement in microfluidics has provided an excellent opportunity for shifting from conventional sub-micron-sized isolation and purification methods to more robust and cost-effective lab-on-chip platforms. The acoustic-driven separation approach applies differential forces acting on target particles, guiding them towards different paths in a label-free and biocompatible manner. The main challenges in designing the acoustofluidic-based isolation platforms are minimizing the reflected radio frequency signal power to achieve the highest acoustic radiation force acting on micro/nano-sized particles and tuning the bandwidth of the acoustic resonator in an acceptable range for efficient size-based binning of particles. Due to the complexity of the physics involved in acoustic-based separations, the current existing lack in performance predictive understanding makes designing these miniature systems iterative and resource-intensive. This study introduces a unique approach for design automation of acoustofluidic devices by integrating the machine learning and multi-objective heuristic optimization approaches. First, a neural network-based prediction platform was developed to predict the resonator's frequency response according to different geometrical configurations of interdigitated transducers In the next step, the multi-objective optimization approach was executed for extracting the optimum design features for maximum possible device performance according to decision-maker criteria. The results show that the proposed methodology can significantly improve the fine-tuned IDT designs with minimum power loss and maximum working frequency range. The examination of the power loss and bandwidth on the alternation and distribution of the acoustic pressure inside the microfluidic channel was carried out by conducting a 3D finite element-based simulation. The proposed methodology improves the performance of the acoustic transducer by overcoming the constraints related to bandwidth operation, the magnitude of acoustic radiation force on particles, and the distribution of pressure acoustic inside the microchannel.

3.
Small ; 16(30): e2000941, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32588966

RESUMO

Cells in vivo are constantly subjected to multiple microenvironmental mechanical stimuli that regulate cell function. Although 2D cell responses to the mechanical stimulation have been established, these methods lack relevance as physiological cell microenvironments are in 3D. Moreover, the existing platforms developed for studying the cell responses to mechanical cues in 3D either offer low-throughput, involve complex fabrication, or do not allow combinatorial analysis of multiple cues. Considering this, a stretchable high-throughput (HT) 3D cell microarray platform is presented that can apply dynamic mechanical strain to cells encapsulated in arrayed 3D microgels. The platform uses inkjet-bioprinting technique for printing cell-laden gelatin methacrylate (GelMA) microgel array on an elastic composite substrate that is periodically stretched. The developed platform is highly biocompatible and transfers the applied strain from the stretched substrate to the cells. The HT analysis is conducted to analyze cell mechano-responses throughout the printed microgel array. Also, the combinatorial analysis of distinct cell behaviors is conducted for different GelMA microenvironmental stiffnesses in addition to the dynamic stretch. Considering its throughput and flexibility, the developed platform can readily be scaled up to introduce a wide range of microenvironmental cues and to screen the cell responses in a HT way.


Assuntos
Bioimpressão , Ensaios de Triagem em Larga Escala , Gelatina , Hidrogéis , Metacrilatos , Impressão Tridimensional
4.
Front Vet Sci ; 7: 620809, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469556

RESUMO

Recent decades have seen a growing interest in the study of extracellular vesicles (EVs), driven by their role in cellular communication, and potential as biomarkers of health and disease. Although it is known that embryos secrete EVs, studies on the importance of embryonic EVs are still very limited. This limitation is due mainly to small sample volumes, with low EV concentrations available for analysis, and to laborious, costly and time-consuming procedures for isolating and evaluating EVs. In this respect, microfluidics technologies represent a promising avenue for optimizing the isolation and characterization of embryonic EVs. Despite significant improvements in microfluidics for EV isolation and characterization, the use of EVs as markers of embryo quality has been held back by two key challenges: (1) the lack of specific biomarkers of embryo quality, and (2) the limited number of studies evaluating the content of embryonic EVs across embryos with varying developmental competence. Our core aim in this review is to identify the critical challenges of EV isolation and to provide seeds for future studies to implement the profiling of embryonic EVs as a diagnostic test for embryo selection. We first summarize the conventional methods for isolating EVs and contrast these with the most promising microfluidics methods. We then discuss current knowledge of embryonic EVs and their potential role as biomarkers of embryo quality. Finally, we identify key ways in which microfluidics technologies could allow researchers to overcome the challenges of embryonic EV isolation and be used as a fast, user-friendly tool for non-invasive embryo selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA