Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cancer Res Commun ; 3(6): 1078-1092, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377604

RESUMO

Triple-negative breast cancer (TNBC) has high relapse and metastasis rates and a high proportion of cancer stem-like cells (CSC), which possess self-renewal and tumor initiation capacity. MELK (maternal embryonic leucine zipper kinase), a protein kinase of the Snf1/AMPK kinase family, is known to promote CSC maintenance and malignant transformation. However, the role of MELK in TNBC metastasis is unknown; we sought to address this in the current study. We found that MELK mRNA levels were higher in TNBC tumors [8.11 (3.79-10.95)] than in HR+HER2- tumors [6.54 (2.90-9.26)]; P < 0.001]. In univariate analysis, patients with breast cancer with high-MELK-expressing tumors had worse overall survival (P < 0.001) and distant metastasis-free survival (P < 0.01) than patients with low-MELK-expressing tumors. In a multicovariate Cox regression model, high MELK expression was associated with shorter overall survival after adjusting for other baseline risk factors. MELK knockdown using siRNA or MELK inhibition using the MELK inhibitor MELK-In-17 significantly reduced invasiveness, reversed epithelial-to-mesenchymal transition, and reduced CSC self-renewal and maintenance in TNBC cells. Nude mice injected with CRISPR MELK-knockout MDA-MB-231 cells exhibited suppression of lung metastasis and improved overall survival compared with mice injected with control cells (P < 0.05). Furthermore, MELK-In-17 suppressed 4T1 tumor growth in syngeneic BALB/c mice (P < 0.001). Our findings indicate that MELK supports metastasis by promoting epithelial-to-mesenchymal transition and the CSC phenotype in TNBC. Significance: These findings indicate that MELK is a driver of aggressiveness and metastasis in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/genética , Camundongos Nus , Zíper de Leucina , Proliferação de Células/fisiologia , Recidiva Local de Neoplasia , Proteínas Serina-Treonina Quinases/genética
3.
Cell Signal ; 63: 109366, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31352007

RESUMO

Maternal embryonic leucine-zipper kinase (MELK) overexpression impacts survival and proliferation of multiple cancer types, most notably glioblastomas and breast cancer. This makes MELK an attractive molecular target for cancer therapy. Yet the molecular mechanisms underlying the involvement of MELK in tumorigenic processes are unknown. MELK participates in numerous protein-protein interactions that affect cell cycle, proliferation, apoptosis, and embryonic development. Here we used both in vitro and in-cell assays to identify a direct interaction between MELK and arrestin-3. A part of this interaction involves the MELK kinase domain, and we further show that the interaction between the MELK kinase domain and arrestin-3 decreases the number of cells in S-phase, as compared to cells expressing the MELK kinase domain alone. Thus, we describe a new mechanism of regulation of MELK function, which may contribute to the control of cell fate.


Assuntos
Arrestinas/química , Arrestinas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Fase S
4.
J Mol Model ; 25(6): 151, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31069524

RESUMO

The protein kinase MELK is an important kinase in cell signaling and has shown to be a promising anti-cancer target. Recent work has resulted in a novel small molecule scaffold targeting MELK, IN17. However, there has been little structural information or physical understanding of MELK-IN17 interactions. Using Tinker-OpenMM on GPUs, we have performed free energy simulations on MELK binding with IN17 and 11 derivatives. This series of studies provides structural insights into how substitution on IN17 leads to differences in complex structure and binding thermodynamics. In addition, this study serves as an assessment of the current capabilities of the AMOEBA forcefield, accelerated by GPU computing, to serve as a molecular-dynamics-based free energy simulation platform for lead optimization.


Assuntos
Modelos Moleculares , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Relação Quantitativa Estrutura-Atividade , Fenômenos Biofísicos , Humanos , Indóis/química , Indóis/farmacologia , Isomerismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Solventes
5.
Expert Opin Ther Targets ; 21(9): 849-859, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28764577

RESUMO

INTRODUCTION: There is an unmet need in triple-negative breast cancer (TNBC) patients for targeted therapies. Maternal embryonic leucine zipper kinase (MELK) is a promising target for inhibition based on the abundance of correlative and functional data supporting its role in various cancer types. Areas covered: This review endeavors to outline the role of MELK in cancer. Studies covering a range of biological functions including proliferation, apoptosis, cancer stem cell phenotypes, epithelial-to-mesenchymal transition, metastasis, and therapy resistance are discussed here in order to understand the potential of MELK as a clinically significant target for TNBC patients. Expert opinion: Targeting MELK may offer a novel therapeutic opportunity in TNBC and other cancers. Despite the abundance of correlative data, there is still much we do not know. There are a lack of potent, specific inhibitors against MELK, as well as an insufficient understanding of MELK's downstream substrates. Addressing these issues is the first step toward identifying a patient population that could benefit from MELK inhibition in combination with other therapies.


Assuntos
Antineoplásicos/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Feminino , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
6.
Bioorg Med Chem ; 25(9): 2609-2616, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28351607

RESUMO

Despite recent advances in molecularly directed therapy, triple negative breast cancer (TNBC) remains one of the most aggressive forms of breast cancer, still without a suitable target for specific inhibitors. Maternal embryonic leucine zipper kinase (MELK) is highly expressed in TNBC, where level of overexpression correlates with poor prognosis and an aggressive disease course. Herein, we describe the discovery through targeted kinase inhibitor library screening, and structure-guided design of a series of ATP-competitive indolinone derivatives with subnanomolar inhibition constants towards MELK. The most potent compound, 17, inhibits the expression of the anti-apoptotic protein Mcl-1 and proliferation of TNBC cells exhibiting selectivity for cells expressing high levels of MELK. These studies suggest that further elaboration of 17 will furnish MELK-selective inhibitors with potential for development in preclinical models of TNBC and other cancers.


Assuntos
Acetanilidas/farmacologia , Antineoplásicos/farmacologia , Indóis/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Acetanilidas/síntese química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Indóis/síntese química , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Inibidores de Proteínas Quinases/síntese química
7.
J Proteome Res ; 15(8): 2739-48, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27425180

RESUMO

Advances in liquid chromatography tandem mass spectrometry (LC-MS/MS) have permitted phosphoproteomic analysis on a grand scale, but ongoing challenges specifically associated with confident phosphate localization continue to motivate the development of new fragmentation techniques. In the present study, ultraviolet photodissociation (UVPD) at 193 nm is evaluated for the characterization of phosphopeptides in both positive and negative ion modes. Compared to the more standard higher energy collisional dissociation (HCD), UVPD provided more extensive fragmentation with improved phosphate retention on product ions. Negative mode UVPD showed particular merit for detecting and sequencing highly acidic phosphopeptides from alpha and beta casein, but was not as robust for larger scale analysis because of lower ionization efficiencies in the negative mode. HeLa and HCC70 cell lysates were analyzed by both UVPD and HCD. While HCD identified more phosphopeptides and proteins compared to UVPD, the unique matches from UVPD analysis could be combined with the HCD data set to improve the overall depth of coverage compared to either method alone.


Assuntos
Fosfopeptídeos/análise , Fotólise/efeitos da radiação , Raios Ultravioleta , Células HeLa , Humanos , Íons , Espectrometria de Massas/métodos , Fragmentos de Peptídeos , Proteínas/análise , Proteômica/métodos
8.
ACS Med Chem Lett ; 3(9): 721-725, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23002419

RESUMO

The JNK-JIP1 interaction represents an attractive target for the selective inhibition of JNK-mediated signaling. We report a virtual screening (VS) workflow, based on a combination of three-dimensional shape and electrostatic similarity to discover novel scaffolds for the development of non-ATP competitive inhibitors of JNK targeting the JNK-JIP interaction. Of 352 (0.13%) compounds selected from the NCI diversity set more than 22% registered as hits in a biochemical kinase assay. Several compounds discovered to inhibit JNK activity under standard kinase assay conditions also impeded JNK activity in HEK293 cells. These studies led to the discovery that the lignan (-)-zuonin A inhibits JNK-protein interactions with a selectivity of 100-fold over ERK2 and p38 MAPKα. These results demonstrate the utility of a virtual screening protocol to identify novel scaffolds for highly selective, cell-permeable inhibitors of JNK-protein interactions.

9.
ACS Chem Biol ; 7(11): 1873-83, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22916726

RESUMO

Recently, in a virtual screening strategy to identify new compounds targeting the D-recruitment site (DRS) of the c-Jun N-terminal kinases (JNKs), we identified the natural product (-)-zuonin A. Here we report the asymmetric synthesis of (-)-zuonin A and its enantiomer (+)-zuonin A. A kinetic analysis for the inhibition of c-Jun phosphorylation by (-)-zuonin A revealed a mechanism of partial competitive inhibition. Its binding is proposed to weaken the interaction of c-Jun to JNK by approximately 5-fold, without affecting the efficiency of phosphorylation within the complex. (-)-Zuonin A inhibits the ability of both MKK4 and MKK7 to phosphorylate and activate JNK. The binding site of (-)-zuonin A is predicted by docking and molecular dynamics simulation to be located in the DRS of JNK. (+)-Zuonin A also binds JNK but barely impedes the binding of c-Jun. (-)-Zuonin A inhibits the activation of JNK, as well as the phosphorylation of c-Jun in anisomycin-treated HEK293 cells, with the inhibition of JNK activation being more pronounced. (-)-Zuonin A also inhibits events associated with constitutive JNK2 activity, including c-Jun phosphorylation, basal Akt activation, and MDA-MB-231 cell migration. Mutations in the predicted binding site for (-)-zuonin A can render it significantly more or less sensitive to inhibition than wild type JNK2, allowing for the design of potential chemical genetic experiments. These studies suggest that the biological activity reported for other lignans, such as saucerneol F and zuonin B, may be the result of their ability to impede protein-protein interactions within MAPK cascades.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lignanas/síntese química , Lignanas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Aristolochia/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Chamaecyparis/química , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase 7/antagonistas & inibidores , MAP Quinase Quinase 7/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Piper/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saururaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA