Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 114(2): 446-458, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37278090

RESUMO

Cannabis use during pregnancy may cause fetal toxicity driven by in utero exposure to (-)-∆9 -tetrahydrocannabinol (THC) and its psychoactive metabolite, (±)-11-hydroxy-∆9 -THC (11-OH-THC). THC concentrations in the human term fetal plasma appear to be lower than the corresponding maternal concentrations. Therefore, we investigated whether THC and its metabolites are effluxed by placental transporters using the dual cotyledon, dual perfusion, term human placenta. The perfusates contained THC alone (5 µM) or in combination (100-250 nM) with its metabolites (100 nM or 250 nM 11-OH-THC, 100 nM COOH-THC), plus a marker of P-glycoprotein (P-gp) efflux (1 or 10 µM saquinavir), and a passive diffusion marker (106 µM antipyrine). All perfusions were conducted with (n = 7) or without (n = 16) a P-gp/BCRP (breast-cancer resistance protein) inhibitor, 4 µM valspodar. The maternal-fetal and fetal-maternal unbound cotyledon clearance indexes (m-f-CLu,c,i and f-m-CLu,c,i ) were normalized for transplacental antipyrine clearance. At 5 µM THC, the m-f-CLu,c,i , 5.1 ± 2.1, was significantly lower than the f-m-CLu,c,i , 13 ± 6.1 (P = 0.004). This difference remained in the presence of valspodar or when the lower THC concentrations were perfused. In contrast, neither metabolite, 11-OH-THC/COOH-THC, had significantly different m-f-CLu,c,i vs. f-m-CLu,c,i . Therefore, THC appears to be effluxed by placental transporter(s) not inhibitable by the P-gp/BCRP antagonist, valspodar, while 11-OH-THC and COOH-THC appear to passively diffuse across the placenta. These findings plus our previously quantified human fetal liver clearance, extrapolated to in vivo, yielded a THC fetal/maternal steady-state plasma concentration ratio of 0.28 ± 0.09, comparable to that observed in vivo, 0.26 ± 0.10.


Assuntos
Troca Materno-Fetal , Placenta , Gravidez , Humanos , Feminino , Placenta/metabolismo , Dronabinol , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Antipirina/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo
2.
Am J Reprod Immunol ; 89(3): e13662, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36458539

RESUMO

PROBLEM: Protective effects for adult neurological disorders have been attributed to sex hormones. Using a murine model of prematurity, we evaluated the role of estrogen signaling in the process of perinatal brain injury following exposure to intrauterine inflammation. METHOD OF STUDY: Intrauterine lipopolysaccharide (LPS) was used to invoke preterm labor and fetal neuroinflammation. Fetal brains were analyzed for changes in Esr1, Esr2 and Cyp19. Dams heterozygous for the Esr1 knockout allele were also given intrauterine LPS to compare delivery and offspring viability to wild type controls. RESULTS: The upregulation in inflammatory cytokines was accompanied by an increase in Esr1 and Esr2 transcripts, though protein levels declined. Cyp19 did not differ by mRNA or protein abundance. Offspring from Esr1 mutants were larger, had a longer gestation and significantly greater mortality. CONCLUSIONS: Estrogen signaling is altered in the fetal brains of preterm offspring exposed to neuroinflammatory injury. The reduction of Esr1 and Esr2 proteins with LPS suggests that these proteins are degraded. It is possible that transcriptional upregulation of Esr1 and Esr2 occurs to compensate for the loss of these proteins. Alternatively, the translation of Esr1 and Esr2 mRNAs may be disrupted with LPS while a feedback mechanism upregulates transcription. Intact Esr1 signaling is also associated with early preterm delivery following exposure to intrauterine LPS. A loss of one Esr1 allele delays this process, but appears to do so at the cost of fetal viability. These results suggest estrogen signaling plays opposing roles between maternal and fetal responses to preterm birth.


Assuntos
Receptor alfa de Estrogênio , Viabilidade Fetal , Nascimento Prematuro , Animais , Feminino , Camundongos , Gravidez , Aromatase , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Viabilidade Fetal/genética , Lipopolissacarídeos , Nascimento Prematuro/genética , Nascimento Prematuro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA