Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
3 Biotech ; 7(5): 320, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28955617

RESUMO

Synthetic pyrethroid-fenvalerate-is one of the most widespread toxic pollutants and has adverse effect on living systems. However, little is known about its biotransformation mechanism in different microorganisms. To elucidate the pathway that might be involved in the catabolism of fenvalerate, we used Bacillus flexus strain XJU-4 (3-nitrobenzoate degrading organism) as an ideal fenvalerate degrading bacterium. Thin layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry analysis results revealed that 3-phenoxybenzoate, protocatechuate, and catechol are the three main by-products of fenvalerate metabolism. Additionally, the bacterial cell-free enzymes showed the activities of fenvalerate hydrolyzing esterase, 3-phenoxybenzaldehyde dehydrogenase, 3-phenoxybenzoate dioxygenase, phenol hydroxylase, protocatechuate 2,3-dioxygenase and catechol-2,3-dioxygenase. Thus, in strain XJU-4, protocatechuate and catechol were further metabolized through meta-cleavage pathway. Moreover, laboratory-scale soil experiments results suggest that B. flexus strain XJU-4 is a suitable contender for bioremediation of pyrethroid fenvalerate-contaminated sites.

2.
3 Biotech ; 6(1): 28, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330094

RESUMO

Marine bacteria are known to produce many bioactive molecules and extracellular enzymes of commercial importance. We have investigated the bacterial diversity of the coastal area of Karwar, Karnataka State, India. Among these bacterial isolates, five bacterial strains were selected and identified by their morphological, biochemical characteristics and phylogenetic analysis based on 16S rRNA gene sequences. The identified bacterial isolates, Bacillus toyonensis PNTB1, Lysinibacillus sphaericus PTB, Vibrio vulnificus PMD, Shewanella MPTDBS, and Pseudomonas chlororaphis PNTB were characterized for their tolerance to salt and antibiotics. Vibrio vulnificus PMD showed maximum tolerance at higher concentration of salt than other bacteria. These bacterial strains were screened for the production of extracellular enzymes such as lipase, cellulase, pectinase, tannase, chitinase, and L-glutaminase. Vibrio vulnificus showed maximum production of L-glutaminase enzyme. Bacillus toyonensis PNTB1 shows lipase, CM-cellulase and chitinase activities. These isolated bacterial cultures were also utilized most of the aromatic compounds at 7 mM. These findings indicate the organisms present in this zone may have more potential applications in bioremediation, agricultural, industrial, and therapeutics.

3.
Braz J Microbiol ; 46(3): 667-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413046

RESUMO

Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water.


Assuntos
Biodegradação Ambiental , Células Imobilizadas/metabolismo , Inseticidas/metabolismo , Micrococcus/metabolismo , Piretrinas/metabolismo , Alginatos , Ácido Glucurônico , Ácidos Hexurônicos , Micrococcus/classificação , Poliuretanos
4.
Braz. j. microbiol ; 46(3): 667-672, July-Sept. 2015. ilus
Artigo em Inglês | LILACS | ID: lil-755816

RESUMO

Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water.

.


Assuntos
Biodegradação Ambiental , Células Imobilizadas/metabolismo , Inseticidas/metabolismo , Micrococcus/metabolismo , Piretrinas/metabolismo , Alginatos , Ácido Glucurônico , Ácidos Hexurônicos , Micrococcus/classificação , Poliuretanos
5.
3 Biotech ; 5(6): 967-974, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28324401

RESUMO

A bacterium capable of degrading pendimethalin was isolated from the contaminated soil samples and identified as Bacillus lehensis XJU based on 16S rRNA gene sequence analysis. 6-Aminopendimethalin and 3,4-dimethyl 2,6-dinitroaniline were identified as the metabolites of pendimethalin degradation by the bacterium. The biodegradation of pendimethalin by freely suspended and the immobilized cells of B. lehensis on various matrices namely agar, alginate, polyacrylamide, and polyurethane foam was also investigated. The batch degradation rate was nearly the same for both free and immobilized cells in agar and alginate, whereas polyacrylamide- and PUF-immobilized cells degraded 93 and 100 of 0.1 % pendimethalin after 96 and 72 h, respectively. At higher concentration, the degradation rate of freely suspended cells decreased; whereas the same immobilized cells on polyurethane foam completely degraded 0.2 % pendimethalin within 96 h. The repeated batch degradation with the polyurethane foam-immobilized cells was reused for 35 cycles without losing the 0.1 % pendimethalin degrading ability. In contrast, agar-, alginate- and polyacrylamide-immobilized cells could be reused for 15, 18, and 25 cycles, respectively. When the pendimethalin concentration was increased to 0.2 %, the immobilized cells could be reused but the pendimethalin degradation rate was decreased. Polyurethane foam-immobilized cells exhibited better tolerance to pH and temperature alterations than freely suspended cells and could be stored for more than 3 months without losing pendimethalin degrading ability. The immobilization of cells capable of degrading pendimethalin may serve as an ideal technique for the complete degradation of the herbicide in the environment.

6.
J Agric Food Chem ; 58(24): 12863-8, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21121628

RESUMO

The phthalimide fungicide captan has been widely used to control plant pathogenic fungi. A strain of Bacillus circulans utilized the fungicide captan as sole source of carbon and energy. The organism degraded captan by a pathway involving its initial hydrolysis to yield cis-1,2,3,6-tetrahydrophthalimide, a compound without fungicidal activity. The formation of this compound was confirmed by HPLC, IR, NMR, and mass spectral analysis. The results also revealed that cis-1,2,3,6-tetrahydrophthalimide was further degraded to o-phthalic acid by a protocatechuate pathway. These findings indicated that there was a complete mineralization of fungicide captan by B. circulans.


Assuntos
Bacillus/metabolismo , Captana/metabolismo , Fungicidas Industriais/metabolismo , Biodegradação Ambiental , Captana/química , Fungicidas Industriais/química , Estrutura Molecular
7.
Biodegradation ; 19(1): 77-82, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17431802

RESUMO

A bacterium capable of utilizing pyrethroid pesticide cypermethrin as sole source of carbon was isolated from soil and identified as a Micrococcus sp. The organism also utilized fenvalerate, deltamethrin, perimethrin, 3-phenoxybenzoate, phenol, protocatechuate and catechol as growth substrates. The organism degraded cypermethrin by hydrolysis of ester linkage to yield 3-phenoxybenzoate, leading to loss of its insecticidal activity. 3-Phenoxybenzoate was further metabolized by diphenyl ether cleavage to yield protocatechuate and phenol as evidenced by isolation and identification of metabolites and enzyme activities in the cell-free extracts. Protocatechuate and phenol were oxidized by ortho-cleavage pathway. Thus, the organism was versatile in detoxification and complete mineralization of pyrethroid cypermethrin.


Assuntos
Micrococcus/metabolismo , Piretrinas/metabolismo , Biodegradação Ambiental , Redes e Vias Metabólicas , Micrococcus/crescimento & desenvolvimento , Oxirredução , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA