Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; : 1-10, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36062365

RESUMO

The Compton signal in electron energy loss spectroscopy (EELS) is used to determine the projected electron momentum density of states for the solid. A frequent limitation however is the strong dynamical scattering of the incident electron beam within a crystalline specimen, i.e. Bragg diffracted beams can be additional sources of Compton scattering that distort the measured profile from its true shape. The Compton profile is simulated via a multislice method that models dynamical scattering both before and after the Compton energy loss event. Simulations indicate the importance of both the specimen illumination condition and EELS detection geometry. Based on this, a strategy to minimize diffraction artifacts is proposed and verified experimentally. Furthermore, an inversion algorithm to extract the projected momentum density of states from a Compton measurement performed under strong diffraction conditions is demonstrated. The findings enable a new route to more accurate electron Compton data from crystalline specimens.

2.
Sci Rep ; 10(1): 11743, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678151

RESUMO

Silica aerogels are low density solids with high surface area and high porosity which are ideal supports for catalyst materials. The main challenge in aerogel production is the drying process, which must remove liquid from the pores of the wet gel while maintaining the solid network. In this work, the synthesis of silica aerogels and nickel-doped silica aerogels by a low energy budget process is demonstrated. Silica aerogels are produced by ambient drying using ammonium bicarbonate, rather than a conventional low surface tension solvent. Heating dissociates the ammonium bicarbonate, so generating CO2 and NH3 within the pores of the wet gel which prevents pore collapse during drying. Nickel-doped aerogels were produced by reducing nickel ions within pre-synthesised silica aerogels. The morphology of the resulting nickel particles-spheres, wires and chains-could be controlled through an appropriate choice of synthesis conditions. Materials were characterized using nitrogen adsorption/desorption isotherms, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis and X-ray diffraction. The surface area of undoped aerogel is found to increase with the concentration of ammonium bicarbonate salts from 360 to 530 m2 g-1, and that of nickel-doped silica aerogel varies from 240 to 310 m2 g-1 with nickel doping conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA