Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 123(5): 638-650, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38332584

RESUMO

The diffusion of extracellular vesicles and liposomes in vivo is affected by different tissue environmental conditions and is of great interest in the development of liposome-based therapeutics and drug-delivery systems. Here, we use a bottom-up biomimetic approach to better isolate and study steric and electrostatic interactions and their influence on the diffusivity of synthetic large unilamellar vesicles in hydrogel environments. Single-particle tracking of these extracellular vesicle-like particles in agarose hydrogels as an extracellular matrix model shows that membrane deformability and surface charge affect the hydrogel pore spaces that vesicles have access to, which determines overall diffusivity. Moreover, we show that passivation of vesicles with PEGylated lipids, as often used in drug-delivery systems, enhances diffusivity, but that this effect cannot be fully explained with electrostatic interactions alone. Finally, we compare our experimental findings with existing computational and theoretical work in the field to help explain the nonspecific interactions between diffusing particles and gel matrix environments.


Assuntos
Hidrogéis , Lipossomos , Sistemas de Liberação de Medicamentos , Lipossomas Unilamelares , Lipídeos
2.
Nat Commun ; 14(1): 6081, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770422

RESUMO

Membrane wetting by biomolecular condensates recently emerged as a key phenomenon in cell biology, playing an important role in a diverse range of processes across different organisms. However, an understanding of the molecular mechanisms behind condensate formation and interaction with lipid membranes is still missing. To study this, we exploited the properties of the dyes ACDAN and LAURDAN as nano-environmental sensors in combination with phasor analysis of hyperspectral and lifetime imaging microscopy. Using glycinin as a model condensate-forming protein and giant vesicles as model membranes, we obtained vital information on the process of condensate formation and membrane wetting. Our results reveal that glycinin condensates display differences in water dynamics when changing the salinity of the medium as a consequence of rearrangements in the secondary structure of the protein. Remarkably, analysis of membrane-condensates interaction with protein as well as polymer condensates indicated a correlation between increased wetting affinity and enhanced lipid packing. This is demonstrated by a decrease in the dipolar relaxation of water across all membrane-condensate systems, suggesting a general mechanism to tune membrane packing by condensate wetting.


Assuntos
Condensados Biomoleculares , Lipídeos de Membrana , Proteínas , Água
3.
J Mater Chem B ; 8(42): 9718-9733, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33015692

RESUMO

Cells reside in vivo within three dimensional environments in which they interact with extracellular matrices (ECMs) that play an integral role in maintaining tissue homeostasis and preventing tumour growth. Thus, tissue culture approaches that more faithfully reproduce these interactions with the ECM are needed to study cancer development and progression. Many materials exist for modeling tissue environments, and the effects of differing mechanical, physical, and biochemical properties of such materials on cell behaviour are often intricately coupled and difficult to tease apart. Here, an optimized protocol was developed to generate low reaction volume disulfide-crosslinked hyaluronic acid (HA) hydrogels for use in cell culture applications to relate the properties of ECM materials to cell signalling and behaviour. Mechanically, HA hydrogels are comparable to other soft hydrogel materials such as Matrigel and agarose or to tissues lacking type I collagen and other fibrillar ECM components. The diffusion of soluble materials in these hydrogels is affected by unique mass transfer properties. Specifically, HA hydrogel concentration affects the diffusion of anionic particles above 500 kDa, whereas diffusion of smaller particles appears unimpeded by HA content, likely reflecting hydrogel pore size. The HA hydrogels have a strong exclusion effect that limits the movement of proteins into and out of the material once fully formed. Such mass transfer properties have interesting implications for cell culture, as they ultimately affect access to nutrients and the distribution of signalling molecules, affecting nutrient sensing and metabolic activity. The use of disulfide-crosslinked HA hydrogels for the culture of the model prostate cancer cell lines PC3 and LNCaP reveals correlations of protein activation linked to metabolic flux, which parallel and can thus potentially provide insights into cell survival mechanisms in response to starvation that occurs in cancer cell microenvironments.


Assuntos
Proliferação de Células , Matriz Extracelular/metabolismo , Ácido Hialurônico/metabolismo , Hidrogéis/metabolismo , Neoplasias da Próstata/metabolismo , Microambiente Tumoral , Materiais Biomiméticos/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Dissulfetos/metabolismo , Humanos , Masculino , Teste de Materiais
4.
Biotechnol Prog ; 36(2): e2942, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31756288

RESUMO

SH-SY5Y and LUHMES cell lines are widely used as model systems for studying neurotoxicity. Most of the existing data regarding the sensitivity of these cell lines to neurotoxicants have been recorded from cells growing as two-dimensional (2D) cultures on the surface of glass or plastic. With the emergence of 3D culture platforms designed to better represent native tissue, there is a growing need to compare the toxicology of neurons grown in 3D environments to those grown in 2D to better understand the impact that culture environment has on toxicant sensitivity. Here, a simple 3D culture method was used to assess the impact of growth environment on the sensitivity of SH-SY5Y cells and LUHMES cells to MPP+, tunicamycin, and epoxomicin, three neurotoxicants that have been previously used to generate experimental models for studying Parkinson's disease pathogenesis. SH-SY5Y cell viability following treatment with these three toxicants was significantly lower in 2D cultures as compared to 3D cultures. On the contrary, LUHMES cells did not show significant differences between growth conditions for any of the toxicants examined. However, LUHMES cells were more sensitive to MPP+, tunicamycin, and epoxomicin than SH-SY5Y cells. Thus, both the choice of cell line and the choice of growth environment must be considered when interpreting in vitro neurotoxicity data.


Assuntos
1-Metil-4-fenilpiridínio/farmacologia , Técnicas de Cultura de Células , Neurotoxinas/farmacologia , Tunicamicina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Oligopeptídeos/farmacologia
6.
Front Chem ; 7: 441, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275925

RESUMO

Aqueous two-phase systems (ATPSs) have numerous applications in separation science, and more recently, in bioassays enabled by the solution micropatterning of cells. The most frequently used ATPS in these applications is the polyethylene glycol (PEG)-dextran (Dex) system, as the polymers that form this ATPS have been extensively characterized in terms of their physicochemical properties. However, in addition to this well-known system, there exist many other ATPSs with properties that may be exploited to improve upon the PEG-dextran system for specific applications. One of these underexplored systems is the ATPS formed from PEG/polyethylene oxide (PEO) and albumin. In this article, we characterize the phase separation of PEG (35 kDa) and polyethylene oxide (PEO) (200, 900, and 4,000 kDa) with bovine serum albumin (BSA). We describe the microscopic emulsion behavior of these systems in the presence of NaCl and compounds (NaHCO3, NaH2PO4, and HEPES) commonly used in buffer solutions and cell culture media. We further demonstrate that PEG- and PEO-albumin systems can be used in place of the PEG-dextran system for confinement of suspension-cultured cells (Jurkat T cells and RPMI-8226 B cells). Cell viability and morphology are examined for various polymer formulations relative to the commonly used PEG 35 kDa-Dex 500 kDa system and polymer-free cell culture medium. In addition, we examine cell activation for various phase-separating medium components by measuring IL-2 and IL-6 secretion. We demonstrate that we can confine immune cells and cytokines in the PEG-BSA system, and that this system can be employed to screen immune responses by enzyme-linked immunospot (ELISpot) assay. This new system represents a promising ATPS formulation for applications where low levels of baseline cell activation are required, for instance, when culturing immune cells.

7.
J Tissue Eng Regen Med ; 13(6): 997-1006, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30811860

RESUMO

Current approaches for precision deposition of cells are not optimized for moist environments or for substrates with complex surface topographic features, for example, the surface of dermal matrices and other biomaterials. To overcome these challenges, an approach is presented that utilizes cell confinement in phase-separating polymer solutions of polyethylene glycol and dextran to precisely deliver keratinocytes in well-defined colonies. Using this approach, keratinocyte colonies are produced with superior viability, proliferative capacity, and barrier formation compared with the same number of cells dispersedly seeded across substrate surfaces. It is further demonstrated that keratinocytes delivered in colonies to the surface of acellular dermal matrices form an intact epidermal basal layer more rapidly and more completely than cells delivered by conventional dispersed seeding. These findings demonstrate that delivery of keratinocytes in phase-separating polymer solutions holds potential for enhancing growth of keratinocytes in culture and production of functional skin equivalents.


Assuntos
Derme Acelular , Queratinócitos/citologia , Polímeros/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Epiderme/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA