Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BBA Clin ; 8: 48-55, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28879096

RESUMO

Threatened miscarriage is the most common gynecological emergency, occurring in about 20% of pregnant women. Approximately one in four of these patients go on to have spontaneous miscarriage and the etiology of miscarriage still remains elusive. In a bid to identify possible biomarkers and novel treatment targets, many studies have been undertaken to elucidate the pathways that lead to a miscarriage. Luteal phase deficiency has been shown to contribute to miscarriages, and the measurement of serum progesterone as a prognostic marker and the prescription of progesterone supplementation has been proposed as possible diagnostic and treatment methods. However, luteal phase deficiency only accounts for 35% of miscarriages. In order to understand the other causes of spontaneous miscarriage and possible novel urine biomarkers for miscarriage, we looked at the changes in urinary metabolites in women with threatened miscarriage. To this end, we performed a case-control study of eighty patients who presented with threatened miscarriage between 6 and 10 weeks gestation. Urine metabolomics analyses of forty patients with spontaneous miscarriages and forty patients with ongoing pregnancies at 16 weeks gestation point to an impaired placental mitochondrial ß-oxidation of fatty acids as the possible cause of spontaneous miscarriage. This study also highlighted the potential of urine metabolites as a non-invasive screening tool for the risk stratification of women presenting with threatened miscarriage.

2.
Sci Rep ; 7(1): 4392, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663594

RESUMO

Regulation of blood glucose requires precise coordination between different endocrine systems and multiple organs. Type 2 diabetes mellitus (T2D) arises from a dysregulated response to elevated glucose levels in the circulation. Globally, the prevalence of T2D has increased dramatically in all age groups. T2D in older adults is associated with higher mortality and reduced functional status, leading to higher rate of institutionalization. Despite the potential healthcare challenges associated with the presence of T2D in the elderly, the pathogenesis and phenotype of late-onset T2D is not well studied. Here we applied untargeted metabolite profiling of urine samples from people with and without late-onset T2D using ultra-performance liquid-chromatography mass-spectrometry (UPLC-MS) to identify urinary biomarkers for late-onset T2D in the elderly. Statistical modeling of measurements and thorough validation of structural assignment using liquid chromatography tandem mass-spectrometry (LC-MS/MS) have led to the identification of metabolite biomarkers associated with late-onset T2D. Lower levels of phenylalanine, acetylhistidine, and cyclic adenosine monophosphate (cAMP) were found in urine samples of T2D subjects validated with commercial standards. Elevated levels of 5'-methylthioadenosine (MTA), which previously has only been implicated in animal model of diabetes, was found in urine of older people with T2D.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 2/metabolismo , Metaboloma , Metabolômica , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Cromatografia Líquida , Diabetes Mellitus Tipo 2/urina , Feminino , Humanos , Masculino , Metabolômica/métodos , Espectrometria de Massas em Tandem
3.
J Cell Biol ; 216(9): 2959-2977, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28687667

RESUMO

Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells.


Assuntos
Adesão Celular , Membrana Celular/fisiologia , Movimento Celular , Citoesqueleto/fisiologia , Fibroblastos/fisiologia , Mecanotransdução Celular , Pseudópodes/fisiologia , Actinas/genética , Actinas/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Forma Celular , Células Cultivadas , Simulação por Computador , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Microscopia de Vídeo , Modelos Biológicos , Miosina Tipo II/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Pseudópodes/metabolismo , Estresse Mecânico , Fatores de Tempo , Transfecção , Vinculina/metabolismo
4.
J Biophotonics ; 10(12): 1703-1713, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28635128

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in developed countries [1]. A subset of individuals with NAFLD progress to non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD which predisposes individuals to cirrhosis, liver failure and hepatocellular carcinoma. The current gold standard for NASH diagnosis and staging is based on histological evaluation, which is largely semi-quantitative and subjective. To address the need for an automated and objective approach to NASH detection, we combined Raman micro-spectroscopy and machine learning techniques to develop a classification model based on a well-established NASH mouse model, using spectrum pre-processing, biochemical component analysis (BCA) and logistic regression. By employing a selected pool of biochemical components, we identified biochemical changes specific to NASH and show that the classification model is capable of accurately detecting NASH (AUC=0.85-0.87) in mice. The unique biochemical fingerprint generated in this study may serve as a useful criterion to be leveraged for further validation in clinical samples.


Assuntos
Microscopia , Hepatopatia Gordurosa não Alcoólica/patologia , Análise Espectral Raman , Animais , Feminino , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
5.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1525-1536, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28641978

RESUMO

Angiopoietin-like 4 (ANGPTL4) is a secretory protein that can be cleaved to form an N-terminal and a C-terminal protein. Studies performed thus far have linked ANGPTL4 to several cancer-related and metabolic processes. Notably, several point mutations in the C-terminal ANGPTL4 (cANGPTL4) have been reported, although no studies have been performed that ascribed these mutations to cancer-related and metabolic processes. In this study, we compared the characteristics of tumors with and without wild-type (wt) cANGPTL4 and tumors with cANGPTL4 bearing the T266M mutation (T266M cANGPTL4). We found that T266M cANGPTL4 bound to integrin α5ß1 with a reduced affinity compared to wt, leading to weaker activation of downstream signaling molecules. The mutant tumors exhibited impaired proliferation, anoikis resistance, and migratory capability and had reduced adenylate energy charge. Further investigations also revealed that cANGPTL4 regulated the expression of Glut2. These findings may explain the differences in the tumor characteristics and energy metabolism observed with the cANGPTL4 T266M mutation compared to tumors without the mutation.


Assuntos
Proteína 4 Semelhante a Angiopoietina/genética , Transportador de Glucose Tipo 2/genética , Integrina alfa5beta1/genética , Neoplasias Hepáticas/genética , Neoplasias Gástricas/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Anoikis/genética , Movimento Celular/genética , Proliferação de Células/genética , Dicroísmo Circular , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Células Hep G2 , Humanos , Integrina alfa5beta1/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Invasividade Neoplásica/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Sci Rep ; 6: 29410, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27381673

RESUMO

Advanced management of dysmetabolic syndromes such as diabetes will benefit from a timely mechanistic insight enabling personalized medicine approaches. Herein, we present a rapid microfluidic neutrophil sorting and functional phenotyping strategy for type 2 diabetes mellitus (T2DM) patients using small blood volumes (fingerprick ~100 µL). The developed inertial microfluidics technology enables single-step neutrophil isolation (>90% purity) without immuno-labeling and sorted neutrophils are used to characterize their rolling behavior on E-selectin, a critical step in leukocyte recruitment during inflammation. The integrated microfluidics testing methodology facilitates high throughput single-cell quantification of neutrophil rolling to detect subtle differences in speed distribution. Higher rolling speed was observed in T2DM patients (P < 0.01) which strongly correlated with neutrophil activation, rolling ligand P-selectin glycoprotein ligand 1 (PSGL-1) expression, as well as established cardiovascular risk factors (cholesterol, high-sensitive C-reactive protein (CRP) and HbA1c). Rolling phenotype can be modulated by common disease risk modifiers (metformin and pravastatin). Receiver operating characteristics (ROC) and principal component analysis (PCA) revealed neutrophil rolling as an important functional phenotype in T2DM diagnostics. These results suggest a new point-of-care testing methodology, and neutrophil rolling speed as a functional biomarker for rapid profiling of dysmetabolic subjects in clinical and patient-oriented settings.


Assuntos
Separação Celular/métodos , Diabetes Mellitus Tipo 2/imunologia , Técnicas Analíticas Microfluídicas/métodos , Neutrófilos/citologia , Adulto , Diabetes Mellitus Tipo 2/diagnóstico , Humanos , Migração e Rolagem de Leucócitos , Pessoa de Meia-Idade , Fenótipo , Análise de Componente Principal , Curva ROC , Análise de Célula Única , Adulto Jovem
7.
PLoS Comput Biol ; 11(5): e1004183, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25996936

RESUMO

The accumulation of mutant mitochondrial DNA (mtDNA) molecules in aged cells has been associated with mitochondrial dysfunction, age-related diseases and the ageing process itself. This accumulation has been shown to often occur clonally, where mutant mtDNA grow in number and overpopulate the wild-type mtDNA. However, the cell possesses quality control (QC) mechanisms that maintain mitochondrial function, in which dysfunctional mitochondria are isolated and removed by selective fusion and mitochondrial autophagy (mitophagy), respectively. The aim of this study is to elucidate the circumstances related to mitochondrial QC that allow the expansion of mutant mtDNA molecules. For the purpose of the study, we have developed a mathematical model of mitochondrial QC process by extending our previous validated model of mitochondrial turnover and fusion-fission. A global sensitivity analysis of the model suggested that the selectivity of mitophagy and fusion is the most critical QC parameter for clearing de novo mutant mtDNA molecules. We further simulated several scenarios involving perturbations of key QC parameters to gain a better understanding of their dynamic and synergistic interactions. Our model simulations showed that a higher frequency of mitochondrial fusion-fission can provide a faster clearance of mutant mtDNA, but only when mutant-rich mitochondria that are transiently created are efficiently prevented from re-fusing with other mitochondria and selectively removed. Otherwise, faster fusion-fission quickens the accumulation of mutant mtDNA. Finally, we used the insights gained from model simulations and analysis to propose a possible circumstance involving deterioration of mitochondrial QC that permits mutant mtDNA to expand with age.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Modelos Biológicos , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Biologia Computacional , Simulação por Computador , Humanos , Mitofagia/genética , Mitofagia/fisiologia , Mutação
8.
J Gerontol A Biol Sci Med Sci ; 69(7): 810-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24398558

RESUMO

Aging has been associated with the accumulation of damages in molecules and organelles in cells, particularly mitochondria. The rate of damage accumulation is closely tied to the turnover of the affected cellular components. Perturbing mitochondrial turnover has been shown to significantly affect the rate of deterioration of mitochondrial function with age and to alter lifespan of model organisms. In this study, we investigated the effects of upregulating autophagy using lithium in Caenorhabditis elegans. We found that lithium treatment increased both the lifespan and healthspan of C. elegans without any significant change in the mortality rate and oxidative damages to proteins. The increase in healthspan was accompanied by improved mitochondrial energetic function. In contrast, mitochondrial DNA copy number decreased faster with age under lithium. To better understand the interactions among mitochondrial turnover, damage, and function, we created a mathematical model that described the dynamics of functional and dysfunctional mitochondria population. The combined analysis of model and experimental observations showed how preferential (selective) autophagy of dysfunctional mitochondria could lead to better mitochondrial functionality with age, despite a lower population size. However, the results of model analysis suggest that the benefit of increasing autophagy for mitochondrial function is expected to diminish at higher levels of upregulation due to a shrinking mitochondrial population.


Assuntos
Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Lítio/farmacologia , Trifosfato de Adenosina/metabolismo , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Animais Geneticamente Modificados , Autofagia/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Variações do Número de Cópias de DNA/efeitos dos fármacos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Metabolismo Energético/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Locomoção/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Modelos Biológicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
9.
PLoS One ; 8(10): e76230, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146842

RESUMO

Accumulation of mitochondrial DNA (mtDNA) mutations has been implicated in a wide range of human pathologies, including neurodegenerative diseases, sarcopenia, and the aging process itself. In cells, mtDNA molecules are constantly turned over (i.e. replicated and degraded) and are also exchanged among mitochondria during the fusion and fission of these organelles. While the expansion of a mutant mtDNA population is believed to occur by random segregation of these molecules during turnover, the role of mitochondrial fusion-fission in this context is currently not well understood. In this study, an in silico modeling approach is taken to investigate the effects of mitochondrial fusion and fission dynamics on mutant mtDNA accumulation. Here we report model simulations suggesting that when mitochondrial fusion-fission rate is low, the slow mtDNA mixing can lead to an uneven distribution of mutant mtDNA among mitochondria in between two mitochondrial autophagic events leading to more stochasticity in the outcomes from a single random autophagic event. Consequently, slower mitochondrial fusion-fission results in higher variability in the mtDNA mutation burden among cells in a tissue over time, and mtDNA mutations have a higher propensity to clonally expand due to the increased stochasticity. When these mutations affect cellular energetics, nuclear retrograde signalling can upregulate mtDNA replication, which is expected to slow clonal expansion of these mutant mtDNA. However, our simulations suggest that the protective ability of retrograde signalling depends on the efficiency of fusion-fission process. Our results thus shed light on the interplay between mitochondrial fusion-fission and mtDNA turnover and may explain the mechanism underlying the experimentally observed increase in the accumulation of mtDNA mutations when either mitochondrial fusion or fission is inhibited.


Assuntos
DNA Mitocondrial/metabolismo , Dinâmica Mitocondrial , Modelos Biológicos , Algoritmos , Células Clonais , Simulação por Computador , Humanos , Mutação/genética , Transdução de Sinais , Processos Estocásticos , Fatores de Tempo
10.
Biophys J ; 99(10): 3155-63, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21081062

RESUMO

Mitochondrial regulation of apoptosis depends on the programmed release of proapoptotic proteins such as cytochrome c (Cyt c) through the outer mitochondrial membrane (OMM). Although a few key processes involved in this release have been identified, including the liberation of inner membrane-bound Cyt c and formation of diffusible pores on the OMM, other details like the transport of Cyt c within complex mitochondrial compartments, e.g., the cristae and crista junctions, are not yet fully understood (to our knowledge). In particular, a remodeling of the inner mitochondrial membrane accompanying apoptosis seen in a few studies, in which crista junctions widen, has been hypothesized to be a necessary step in the Cyt c release. Using a three-dimensional spatial modeling of mitochondrial crista and the crista junction, model simulations and analysis illustrated how the interplay among solubilization of Cyt c, fast diffusion of Cyt c, and OMM permeabilization gives rise to the observed experimental release profile. Importantly, the widening of the crista junction was found to have a negligible effect on the transport of free Cyt c from cristae. Finally, model simulations showed that increasing the fraction of free/loosely-bound Cyt c can sensitize the cell to apoptotic stimuli in a threshold manner, which may explain increased sensitivity to cell death associated with aging.


Assuntos
Biologia Computacional , Citocromos c/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Simulação por Computador , Difusão , Membranas Mitocondriais/metabolismo , Permeabilidade , Reprodutibilidade dos Testes , Solubilidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA