Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
J Pharm Sci ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641061

RESUMO

Sodium-phosphate transporter NPT4 (SLC17A3) is a membrane transporter for organic anionic compounds localized on the apical membranes of kidney proximal tubular epithelial cells and plays a role in the urinary excretion of organic anionic compounds. However, its physiological role has not been sufficiently elucidated because its substrate specificity is yet to be determined. The present study aimed to comprehensively explore the physiological substrates of NPT4 in newly developed Slc17a3-/- mice using a metabolomic approach. Metabolomic analysis showed that the plasma concentrations of 11 biological substances, including 3-indoxyl sulfate, were more than two-fold higher in Slc17a3-/- mice than in wild-type mice. Moreover, urinary excretion of 3-indoxyl sulfate was reduced in Slc17a3-/- mice compared to that in wild-type mice. The uptake of 3-indoxyl sulfate by NPT4-expressing Xenopus oocytes was significantly higher than that by water-injected oocytes. The calculated Km and Vmax values for NPT4-mediated 3-indoxyl sulfate uptake were 4.52 ± 1.18 mM and 1.45 ± 0.14 nmol/oocyte/90 min, respectively. In conclusion, the present study revealed that 3-indoxyl sulfate is a novel substrate of NPT4 based on the metabolomic analysis of Slc17a3-/- mice, suggesting that NPT4 regulates systemic exposure to 3-indoxyl sulfate by regulating its urinary excretion.

2.
Sci Rep ; 14(1): 9901, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688923

RESUMO

Hyperuricemia (HUA) is a symptom of high blood uric acid (UA) levels, which causes disorders such as gout and renal urinary calculus. Prolonged HUA is often associated with hypertension, atherosclerosis, diabetes mellitus, and chronic kidney disease. Studies have shown that gut microbiota (GM) affect these chronic diseases. This study aimed to determine the relationship between HUA and GM. The microbiome of 224 men and 254 women aged 40 years was analyzed through next-generation sequencing and machine learning. We obtained GM data through 16S rRNA-based sequencing of the fecal samples, finding that alpha-diversity by Shannon index was significantly low in the HUA group. Linear discriminant effect size analysis detected a high abundance of the genera Collinsella and Faecalibacterium in the HUA and non-HUA groups. Based on light gradient boosting machine learning, we propose that HUA can be predicted with high AUC using four clinical characteristics and the relative abundance of nine bacterial genera, including Collinsella and Dorea. In addition, analysis of causal relationships using a direct linear non-Gaussian acyclic model indicated a positive effect of the relative abundance of the genus Collinsella on blood UA levels. Our results suggest abundant Collinsella in the gut can increase blood UA levels.


Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Aprendizado de Máquina , RNA Ribossômico 16S , Ácido Úrico , Humanos , Hiperuricemia/microbiologia , Hiperuricemia/sangue , Masculino , Feminino , Adulto , RNA Ribossômico 16S/genética , Ácido Úrico/sangue , Fezes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Pessoa de Meia-Idade
3.
J Pharmacol Exp Ther ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670801

RESUMO

Dotinurad was developed as a uricosuric agent, inhibiting urate (UA) reabsorption through the UA transporter URAT1 in the kidneys. Due to its high selectivity for URAT1 among renal UA transporters, we investigated the mechanism underlying this selectivity by identifying dotinurad binding sites specific to URAT1. Dotinurad was docked to URAT1 using AutoDock4, utilizing the AlphaFold2-predicted structure. The inhibitory effects of dotinurad on wild-type and mutated URAT1 at the predicted binding sites were assessed through URAT1-mediated [14C]UA uptake in Xenopus oocytes. Nine amino acid residues in URAT1 were identified as dotinurad-binding sites. Sequence alignment with UA-transporting organic anion transporters (OATs) revealed that H142 and R487 were unique to URAT1 among renal UA-transporting OATs. For H142, IC50 values of dotinurad increased to 62, 55, and 76 nM for mutated URAT1 (H142A, H142E, and H142R, respectively), compared to 19 nM for the wild-type, indicating that H142 contributes to URAT1-selective interaction with dotinurad. H142 was predicted to interact with the phenyl-hydroxyl group of dotinurad. The IC50 of the hydroxyl group methylated dotinurad (F13141) was 165 µM, 8,420-fold higher than dotinurad, suggesting the interaction of H142 and the phenyl-hydroxyl group by forming a hydrogen bond. Regarding R487, URAT1-R487A exhibited a loss of activity. Interestingly, the URAT1-H142A/R487A double mutant restored UA transport activity, with the IC50 value of dotinurad for the mutant (388 nM) significantly higher than that for H142A (73.5 nM). These results demonstrate that H142 and R487 of URAT1 determine its selectivity for dotinurad, a uniqueness observed only in URAT1 among UA-transporting OATs. Significance Statement Dotinurad selectively inhibits the urate reabsorption transporter URAT1 in renal urate-transporting OATs. This study demonstrates that dotinurad interacts with H142 and R487 of URAT1, located in the extracellular domain and unique among OATs when aligning amino acid sequences. Mutations in these residues reduce affinity of dotinurad for URAT1, confirming their role in conferring selective inhibition. Additionally, the interaction between dotinurad and URAT1 involving H142 was found to mediate hydrogen bonding.

4.
Bioorg Med Chem ; 102: 117674, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38457912

RESUMO

Controlling RAS mutant cancer progression remains a significant challenge in developing anticancer drugs. Whereas Ras G12C-covalent binders have received clinical approval, the emergence of further mutations, along with the activation of Ras-related proteins and signals, has led to resistance to Ras binders. To discover novel compounds to overcome this bottleneck, we focused on the concurrent and sustained blocking of two major signaling pathways downstream of Ras. To this end, we synthesized 25 drug-drug conjugates (DDCs) by combining the MEK inhibitor trametinib with Akt inhibitors using seven types of linkers with structural diversity. The DDCs were evaluated for their cell permeability/accumulation and ability to inhibit proliferation in RAS-mutant cell lines. A representative DDC was further evaluated for its effects on signaling proteins, induction of apoptosis-related proteins, and the stability of hepatic metabolic enzymes. These in vitro studies identified a series of DDCs, especially those containing a furan-based linker, with promising properties as agents for treating RAS-mutant cancers. Additionally, in vivo experiments in mice using the two selected DDCs revealed prolonged half-lives and anticancer efficacies comparable to those of trametinib. The PK profiles of trametinib and the Akt inhibitor were unified through the DDC formation. The DDCs developed in this study have potential as drug candidates for the broad inhibition of RAS-mutant cancers.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Inibidores da Angiogênese/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral
5.
Pharmacol Ther ; 256: 108615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382882

RESUMO

Owing to renal reabsorption and the loss of uricase activity, uric acid (UA) is strictly maintained at a higher physiological level in humans than in other mammals, which provides a survival advantage during evolution but increases susceptibility to certain diseases such as gout. Although monosodium urate (MSU) crystal precipitation has been detected in different tissues of patients as a trigger for disease, the pathological role of soluble UA remains controversial due to the lack of causality in the clinical setting. Abnormal elevation or reduction of UA levels has been linked to some of pathological status, also known as U-shaped association, implying that the physiological levels of UA regulated by multiple enzymes and transporters are crucial for the maintenance of health. In addition, the protective potential of UA has also been proposed in aging and some diseases. Therefore, the role of UA as a double-edged sword in humans is determined by its physiological or non-physiological levels. In this review, we summarize biosynthesis, membrane transport, and physiological functions of UA. Then, we discuss the pathological involvement of hyperuricemia and hypouricemia as well as the underlying mechanisms by which UA at abnormal levels regulates the onset and progression of diseases. Finally, pharmacological strategies for urate-lowering therapy (ULT) are introduced, and current challenges in UA study and future perspectives are also described.


Assuntos
Hiperuricemia , Ácido Úrico , Animais , Humanos , Ácido Úrico/uso terapêutico , Hiperuricemia/tratamento farmacológico , Mamíferos
6.
Biol Pharm Bull ; 47(1): 72-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171780

RESUMO

We recently reported that the gastrointestinal (GI) fluid volume is influenced by the solution osmolality, and proposed that this effect may play a role in beverage-drug interactions. Here, we investigated whether osmolality-dependent fluid secretion can explain the difference in the magnitudes of fruit juice-drug interactions depending on the type of fruit juice (grapefruit juice (GFJ), orange juice (OJ), and apple juice (AJ)). The osmolality of GFJ, OJ, and AJ used in this study was found to be 552, 686, and 749 mOsm/kg, respectively. Measurements of intestinal fluid movement following beverage administration by the in situ closed-loop technique revealed the following rank order for fluid volume in rat ileum: AJ > OJ > GFJ > purified water, suggesting that water movement is dependent on the osmolality of these beverages. Such changes in GI fluid volume are expected to alter the luminal drug concentration, potentially contributing to the magnitude of beverage-drug interactions. Indeed, in vivo pharmacokinetic study in rats revealed that the plasma concentration of atenolol, a low-permeability drug, was the highest after oral administration in purified water, followed by GFJ and OJ, and was the lowest after administration in AJ. In contrast, antipyrine, a high-permeability drug, showed no significant difference in plasma concentration after administration in purified water and fruit juices, suggesting that the absorption of high-permeability drugs is less affected by solution osmolality. Our findings indicate that differences in the magnitude of beverage-drug interactions can be at least partly explained by differences in the osmolality of the beverages ingested.


Assuntos
Citrus paradisi , Citrus sinensis , Malus , Ratos , Animais , Sucos de Frutas e Vegetais , Interações Alimento-Droga , Bebidas/análise , Concentração Osmolar , Água , Frutas
7.
Biopharm Drug Dispos ; 45(1): 3-14, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38085672

RESUMO

The aim of this study was firstly to investigate the effect of membrane permeability on the intestinal availability (Fg ) of 10 cytochrome P450 3A4 substrates with differing permeability (Papp ) and metabolic activity (CLint ) using Madin-Darby canine kidney II (MDCKII) cells expressing human CYP3A4 (MDCKII/CYP3A4 cells), and secondly to confirm the essential factors by simulations. A membrane permeation assay using MDCKII/CYP3A4 cells showed a significant correlation between human intestinal extraction ratio (ER) (Eg (=1 - Fg )) and in vitro cellular ER (r = 0.834). This relationship afforded better predictability of Eg values than the relationship between Eg and CLint,HIM values obtained from human intestinal microsomes (r = 0.598). An even stronger correlation was observed between 1 - Fa ·Fg and ER (r = 0.874). Simulation with a cellular kinetic model indicated that ER is sensitive to changes of PSpassive and CLint values, but not to the intracellular unbound fraction (fu,cell ) or P-gp-mediated efflux (PSP - gp ). It may be concluded that, based on the concentration-time profile of drugs in epithelial cells, transmembrane permeability influences Fg (or ER) and drug exposure time to metabolizing enzymes for P450 substrate.


Assuntos
Citocromo P-450 CYP3A , Absorção Intestinal , Humanos , Animais , Cães , Citocromo P-450 CYP3A/metabolismo , Intestinos , Permeabilidade da Membrana Celular , Permeabilidade
8.
Sci Rep ; 13(1): 17454, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838772

RESUMO

The drug absorption profile is dependent on the luminal drug concentration, which in turn is influenced by the gastrointestinal (GI) fluid dynamics. In the present study, therefore, we aimed to examine the luminal fluid dynamics by kinetically analyzing fluid absorption and secretion along the GI tract in rats using the in situ closed-loop technique with non-absorbable fluorescein isothiocyanate-dextran 4000 (FD-4) and tritium water labeling ([3H]water) under different osmotic conditions. We found that the luminal fluid volume in the jejunum and ileum, but not the colon, gradually decreased and reached a steady state. In contrast, [3H]water almost completely disappeared in all intestinal regions. Kinetic analysis revealed the following rank order for the rate constant of fluid secretion: jejunum > ileum > colon, whereas a negligible regional difference was observed in the rate constant of fluid absorption. Fluid secretion under an isosmotic condition (300 mOsm/kg) was higher than that at 0 mOsm/kg in all intestinal regions, though no significant changes in fluid absorption were observed. Thus, the fluid secretion process appears to be the major determinant of the regional differences in GI fluid dynamics. Our findings indicate that the luminal fluid volume is altered as a result of water ingestion, absorption, and secretion, and finally reaches an apparent steady state, which is regulated mainly by the process of fluid secretion.


Assuntos
Hidrodinâmica , Absorção Intestinal , Ratos , Animais , Cinética , Trato Gastrointestinal/metabolismo , Jejuno/metabolismo , Água/metabolismo
9.
J Stroke Cerebrovasc Dis ; 32(12): 107419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839304

RESUMO

OBJECTIVES: Stroke patients frequently exhibit loss of independence of urination, and their lower urinary tract symptoms change with the phase of stroke. However, it is unclear whether switching prescribed drugs for lower urinary tract symptoms during hospitalization from acute care wards to convalescence rehabilitation wards affects patients' independence of urination at discharge. It is also unclear whether the impact of switching varies by stroke type. This retrospective cohort study aimed to examine these issues. MATERIALS AND METHODS: We analyzed 990 patients registered in the Kaga Regional Cooperation Clinical Pathway for Stroke database during 2015-2019. Prescriptions for lower urinary tract symptoms from pre-onset to convalescence rehabilitation were surveyed. Logistic regression analysis was performed to examine the association between switching drugs and independence of urination based on bladder management and voiding location at discharge. Stroke types were also examined in subgroup analyses. RESULTS: About 21 % of patients had their lower urinary tract symptoms prescriptions switched during hospitalization. Switching was positively associated with independence of bladder management (odds ratio 1.65, 95 % confidence interval 1.07 to 2.49) and voiding location (odds ratio 2.72, 95 % confidence interval 1.72 to 4.37). Similar associations were observed in different stroke types. CONCLUSIONS: Approximately 20 % of patients had their lower urinary tract symptoms medications switched upon transfer from acute to convalescence rehabilitation wards. Switching was significantly associated with improved urinary independence at discharge. Consistent results were observed across different stroke types, suggesting that switching medications contributes to urinary independence after stroke, regardless of the etiology or severity of stroke.


Assuntos
Sintomas do Trato Urinário Inferior , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Micção , Convalescença , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Sintomas do Trato Urinário Inferior/diagnóstico , Sintomas do Trato Urinário Inferior/tratamento farmacológico , Sintomas do Trato Urinário Inferior/etiologia
10.
Drug Metab Dispos ; 51(11): 1527-1535, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37643882

RESUMO

Urate transporter 1 (URAT1) is a transporter responsible for uric acid (UA) reabsorption by renal proximal tubules and a pharmacological target of uricosuric agents. Probenecid and benzbromarone have been used as uricosuric agents, while dotinurad was recently approved in Japan. Notably, the in vitro IC 50 of dotinurad on URAT1 is not strong enough to explain its in vivo uricosuric effect estimated based on clinical unbound plasma concentrations, suggesting the presence of mechanisms other than competition with UA uptake at the extracellular domain of URAT1 (cis-inhibition). In this study, trans-inhibition was hypothesized as the mechanism underlying URAT1 inhibition by dotinurad, wherein intracellularly accumulated dotinurad inactivates URAT1. In URAT1-expressing Madin-Darby Canine Kidney-II cells and Xenopus oocytes, pre-incubation with dotinurad potentiated the inhibitory effect more than co-incubation alone, but this effect was not observed with benzbromarone or probenecid. Under co-incubation, dotinurad inhibited UA uptake in a competitive manner (cis-inhibition). When we pre-injected dotinurad directly into oocytes and immediately measured [14C]UA uptake without coincubation (only trans-inhibition), dotinurad noncompetitively inhibited UA uptake. URAT1 is an exchange transporter for UA and monocarboxylates such as nicotinic acid (NA). Pre-injected dotinurad and extracellular UA attenuated and facilitated efflux of [3H]NA, respectively, whereas pre-injection of benzbromarone or probenecid did not affect it, suggesting that dotinurad exhibits trans-inhibition by attenuating URAT1-mediated efflux of monocarboxylates, which is a driving force for UA uptake by URAT1. Accordingly, dotinurad ameliorates URAT1-mediated UA reabsorption by both cis- and trans-inhibition, explaining its clinically stronger uricosuric effect than that estimated by the in vitro IC50 value. SIGNIFICANCE STATEMENT: The uricosuric agent dotinurad inhibits uric acid reabsorptive transporter (URAT) 1 with a clinical potency stronger than that estimated from IC 50 obtained by in vitro URAT1 inhibition. This in vivo-in vitro discrepancy was explained by the trans-inhibition effect of dotinurad on URAT1. Trans-inhibition was due to the attenuation of monocarboxylates efflux via URAT1, which is a driving force for URAT1-mediated exchange transport of uric acid. Overall, this is the first study to experimentally demonstrate trans-inhibition mechanism of URAT1.

11.
Commun Biol ; 6(1): 866, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608051

RESUMO

Biliary excretion is a major drug elimination pathway that affects their efficacy and safety. The currently available in vitro sandwich-cultured hepatocyte method is cumbersome because drugs accumulate in the closed bile canalicular lumen formed between hepatocytes and their amounts cannot be mealsured directly. This study proposes a hepatocyte culture model for the rapid evaluation of drug biliary excretion using permeation assays. When hepatocytes are cultured on a permeable support coated with the cell adhesion protein claudins, an open-form bile canalicular lumen is formed at the surface of the permeable support. Upon application to the basolateral (blood) side, drugs appear on the bile canalicular side. The biliary excretion clearance of several drugs, as estimated from the obtained permeabilities, correlates well with the reported in vivo biliary excretion clearance in humans. Thus, the established model is useful for applications in the efficient evaluation of biliary excretion during drug discovery and development.


Assuntos
Canalículos Biliares , Eliminação Hepatobiliar , Humanos , Vias de Eliminação de Fármacos , Bioensaio , Hepatócitos
12.
Drug Metab Pharmacokinet ; 52: 100512, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37517353

RESUMO

PURPOSE: Plant-derived extracellular vesicles (EVs) have been reported to exert biological activity on intestinal tissues by delivering their contents into intestinal cells. We previously reported that ASBT/SLC10A2 mRNA was downregulated by apple-derived extracellular vesicles (APEVs). ASBT downregulation is effective in the treatment of cholestasis and chronic constipation, similar to the beneficial effects of apples. Therefore, this study aimed to establish the mechanism of ASBT downregulation by APEVs, focusing on microRNAs present in APEVs. RESULTS: APEVs downregulated the expression of ASBT, but no significant effect on SLC10A2-3'UTR was observed. Proteomics revealed that APEVs decreased the expression of RARα/NR1B1. The binding of RARα to SLC10A2 promoter was also decreased by APEVs. The stability of NR1B1 mRNA was attenuated by APEVs and its 3'UTR was found to be a target for APEVs. Apple microRNAs that were predicted to interact with NR1B1-3'UTR were present in APEVs, and their mimics suppressed NR1B1 mRNA expression. CONCLUSIONS: Suppression of ASBT by APEVs was indirectly mediated by the downregulation of RARα, and its stability was lowered by microRNAs present in APEVs. This study suggested that macromolecules in food directly affect intestinal function by means of EVs that stabilize them and facilitate their cellular uptake.


Assuntos
Vesículas Extracelulares , Malus , MicroRNAs , Simportadores , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Baixo , Malus/genética , Malus/metabolismo , Regiões 3' não Traduzidas , Ácidos e Sais Biliares , MicroRNAs/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Simportadores/genética , Simportadores/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo
13.
Drug Metab Dispos ; 51(9): 1177-1187, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385755

RESUMO

The proximal tubule plays an important role in the kidney and is a major site of drug interaction and toxicity. Analysis of kidney toxicity via in vitro assays is challenging, because only a few assays that reflect functions of drug transporters in renal proximal tubular epithelial cells (RPTECs) are available. In this study, we aimed to develop a simple and reproducible method for culturing RPTECs by monitoring organic anion transporter 1 (OAT1) as a selection marker. Culturing RPTECs in spherical cellular aggregates increased OAT1 protein expression, which was low in the conventional two-dimensional (2D) culture, to a level similar to that in human renal cortices. By proteome analysis, it was revealed that the expression of representative two proximal tubule markers was maintained and 3D spheroid culture improved the protein expression of approximately 7% of the 139 transporter proteins detected, and the expression of 2.3% of the 4,800 proteins detected increased by approximately fivefold that in human renal cortices. Furthermore, the expression levels of approximately 4,800 proteins in three-dimensional (3D) RPTEC spheroids (for 12 days) were maintained for over 20 days. Cisplatin and adefovir exhibited transporter-dependent ATP decreases in 3D RPTEC spheroids. These results indicate that the 3D RPTEC spheroids developed by monitoring OAT1 gene expression are a simple and reproducible in vitro experimental system with improved gene and protein expressions compared with 2D RPTECs and were more similar to that in human kidney cortices. Therefore, it can potentially be used for evaluating human renal proximal tubular toxicity and drug disposition. SIGNIFICANCE STATEMENT: This study developed a simple and reproducible spheroidal culture method with acceptable throughput using commercially available RPTECs by monitoring OAT1 gene expression. RPTECs cultured using this new method showed improved mRNA/protein expression profiles to those in 2D RPTECs and were more similar to those of human kidney cortices. This study provides a potential in vitro proximal tubule system for pharmacokinetic and toxicological evaluations during drug development.


Assuntos
Rim , Proteína 1 Transportadora de Ânions Orgânicos , Humanos , Rim/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Expressão Gênica , Células Epiteliais/metabolismo
14.
Food Funct ; 14(10): 4836-4846, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37129213

RESUMO

Apples are known to exhibit various beneficial effects on human health. In the present study, we investigated the effect of continuous intake of apple juice (AJ) on constipation status. A single dose of loperamide in rats as the constipation model markedly decreased the weight and number of fecal pellets compared to saline-administered rats as a control. After the administration of AJ twice a day for seven days, recovery of defecation close to that of the control was observed in loperamide-treated rats. In addition, the total bile acid content in the feces increased from day 4 after the administration of AJ. Among hepatic and intestinal transporters and enzymes that regulate bile acids, the mRNA expression of the apical sodium-dependent bile acid transporter (Asbt, slc10a2) was decreased by AJ in rats. Furthermore, the Asbt-mediated bile acid transport activity in the rat ileum decreased after AJ administration. Moreover, in human colonic cancer-derived Caco-2 cells, AJ exposure for 24 and 48 h decreased the expressions of ASBT mRNA and protein, and the uptake activity of taurocholic acid in both 7- and 21-d cultures. Several components of AJ, such as procyanidins, decreased the expression of ASBT in Caco-2 cells. In conclusion, ASBT downregulation is a possible mechanism responsible for the constipation-relieving effect of apples, and procyanidins may play a role in downregulating ASBT, which leads to the beneficial effects of apples against constipation. Although it is generally agreed that the common dietary compositions play a role in constipation relief, the novel specific mechanism of apples found in this study would facilitate understanding food functions.


Assuntos
Malus , Proantocianidinas , Simportadores , Ratos , Humanos , Animais , Malus/metabolismo , Loperamida/efeitos adversos , Proantocianidinas/farmacologia , Células CACO-2 , Simportadores/genética , Simportadores/metabolismo , Ácidos e Sais Biliares/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Íleo/metabolismo , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
AAPS J ; 25(3): 42, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081157

RESUMO

Since the processes of dissolution and membrane permeation are affected by the water content in the gastrointestinal (GI) tract, the water dynamics in the GI tract is expected to have a significant impact on the absorption of orally administered drugs. Here, we aimed to develop a physiologically based fluid kinetic (PBFK) model using GI water kinetic parameters obtained from in situ closed-loop studies in rats in order to quantitatively predict GI water dynamics. By incorporating the experimentally measured site-specific parameters of GI water absorption and secretion into a GI compartment model, we developed a bottom-up PBFK model that successfully simulates the reported GI fluid dynamics in rats and humans observed using positron emission tomography and magnetic resonance imaging, respectively. The simulations indicate that the water volume in both the stomach and duodenum is transiently increased by water ingestion, while that in the intestine below the jejunum is unchanged and remains in a steady state in both rats and humans. Furthermore, sensitivity analysis of the effect of ingested water volume on the volume-time profiles of water in the GI tract indicated that the impact of ingested water is limited to the proximal part of the GI tract. Simulations indicated that changes in water kinetic parameters may alter the impact of the ingested water on GI fluid dynamics, especially in the proximal part. Incorporating this PBFK model into a physiologically based pharmacokinetic (PBPK) absorption model has the potential to predict oral drug absorption in a variety of GI water environments.


Assuntos
Trato Gastrointestinal , Água , Humanos , Ratos , Animais , Trato Gastrointestinal/metabolismo , Absorção Intestinal/fisiologia , Tomografia por Emissão de Pósitrons , Administração Oral , Modelos Biológicos
17.
Pharmaceutics ; 15(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36839818

RESUMO

We evaluated the whole-body distribution of orally-administered radioiodine-125 labeled acetaminophen (125I-AP) to estimate gastrointestinal absorption of anionic drugs. 125I-AP was added to human embryonic kidney (HEK)293 and Flp293 cells expressing human organic anion transporting polypeptide (OATP)1B1/3, OATP2B1, organic anion transporter (OAT)1/2/3, or carnitine/organic cation transporter (OCTN)2, with and without bromosulfalein (OATP and multidrug resistance-associated protein (MRP) inhibitor) and probenecid (OAT and MRP inhibitor). The biological distribution in mice was determined by oral administration of 125I-AP with and without bromosulfalein and by intravenous administration of 125I-AP. The uptake of 125I-AP was significantly higher in HEK293/OATP1B1, OATP1B3, OATP2B1, OAT1, and OAT2 cells than that in mock cells. Bromosulfalein and probenecid inhibited OATP- and OAT-mediated uptake, respectively. Moreover, 125I-AP was easily excreted in the urine when administered intravenously. The accumulation of 125I-AP was significantly lower in the blood and urinary bladder of mice receiving oral administration of both 125I-AP and bromosulfalein than those receiving only 125I-AP, but significantly higher in the small intestine due to inhibition of OATPs and/or MRPs. This study indicates that whole-body distribution after oral 125I-AP administration can be used to estimate gastrointestinal absorption in the small intestine via OATPs, OATs, and/or MRPs by measuring radioactivity in the urinary bladder.

18.
Pharm Res ; 39(7): 1549-1559, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35314999

RESUMO

AIM: Identification of blood-brain barrier (BBB) uptake transporters is a major challenge in the research and development of central nervous system (CNS) drugs. However, conventional methods that consider known drug uptake characteristics have failed at identifying the responsible transporter molecule. The present study aimed at identifying aripiprazole uptake transporters in BBB model hCMEC/D3 cells using a knockdown screening study targeting various transporters, including uncharacterized ones. METHODS: We evaluated the effect of 214 types of siRNA targeting transporters on the uptake of aripiprazole, an atypical antipsychotic drug, in hCMEC/D3 cells. Aripiprazole uptake was determined using Xenopus oocytes expressing the candidate genes extracted from the siRNA screening assay. RESULTS: The estimated unbound brain to plasma concentration ratio (Kp,uu,brain) of aripiprazole was estimated as 0.67 in wild-type mice and 1.94 in abcb1a/1b/abcg2 knockout mice, suggesting the involvement of both uptake and efflux transporters in BBB permeation. According to siRNA knockdown screening studies, organic cation/carnitine transporter 2 (OCTN2) and long-chain fatty acid transporter 1 (FATP1) were identified as candidate genes. The uptake of aripiprazole by hCMEC/D3 cells was decreased by OCTN2 inhibitors, but not by FATP1 inhibitors. A partially increased uptake of aripiprazole was observed in OCTN2-expressing Xenopus oocytes. Finally, to evaluate transporter-mediated BBB permeation of drugs, the reported and estimated Kp,uu,brain values were summarized. CONCLUSIONS: A knockdown screening study in combination with Kp,uu,brain values showed that aripiprazole was a potential substrate of OCTN2. The technique described in this study can be applied to identifying novel BBB transporters for CNS drugs.


Assuntos
Barreira Hematoencefálica , Proteínas de Membrana Transportadoras , Animais , Aripiprazol/farmacologia , Transporte Biológico , Encéfalo , Camundongos , RNA Interferente Pequeno/genética
19.
Biol Pharm Bull ; 45(3): 316-322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228397

RESUMO

The type of method adopted for the evaluation of drug-induced kidney injury (DIKI) plays an important role during the drug discovery process. In the present study, the usefulness of cultured rat kidney tissue slices maintained on gas-permeable poly(dimethylsiloxane) (PDMS) plates for DIKI was assessed by monitoring the ATP content as a marker of cell viability. The amount of ATP in the kidney slices cultured on the PDMS plates was higher than that in the slices cultured on gas-impermeable polystyrene plates. The protein expression of organic cation transporter-2 (Oct2) was maintained for 3 d. Cisplatin showed a time- and concentration-dependent reduction in ATP in the slices with a half-effective concentration value of 24 µM, which was alleviated by cimetidine, an Oct2 inhibitor, suggesting that cisplatin-induced kidney injury in the cultured slices was regulated by the basolateral uptake transporter Oct2. Furthermore, the intensity of platinum anticancer drug-induced nephrotoxicity in the cultured slices was consistent with that of the in vivo study. In conclusion, the primary culture of rat kidney tissue slices on gas-permeable plates is expected to aid in the prediction of the extent of nephrotoxicity of drugs, even when transporters are responsible for the accumulation of drugs in kidney tissues.


Assuntos
Antineoplásicos , Platina , Animais , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Cisplatino/efeitos adversos , Rim , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Platina/metabolismo , Ratos
20.
J Pharm Sci ; 111(5): 1531-1541, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35090865

RESUMO

The aim of this study was to investigate the contributions of multiple transport mechanisms to the intestinal absorption of metformin, focusing on OCT3, PMAT, THTR2, SERT and OCTN2. We also assessed the impact of these transporters on the nonlinear absorption of metformin. Uptake studies with MDCKII cells expressing OCT3, PMAT, THTR2 or SERT confirmed that metformin is a substrate of these transporters. Decynium22 strongly inhibited metformin uptake mediated by all the transporters. 7-Cyclopentyl inhibited OCT3- and THTR2-mediated uptake of metformin. AG835, thiamine and paroxetine specifically inhibited PMAT-, THTR2- and SERT-mediated uptake of metformin, respectively. Using these inhibitors, the relative contributions of OCT3, PMAT, THTR2, SERT, OCTN2 and others to the intestinal permeation of metformin across Caco-2 cells were estimated to be 9.77%, 9.68%, 22.2%, 1.52%, 0% and 0.66%, respectively. Concentration-dependent analysis of metformin uptake by Caco-2 cells revealed nonlinear kinetics with the similar Km(app) value to the value for THTR2. Further in situ absorption study demonstrated that rat intestinal permeability of metformin was significantly decreased in the presence of decynium22, 7-cyclopentyl and thiamine. The present study indicated that THTR2 is the major determinant of the nonlinear absorption of metformin, although multiple transport mechanisms contribute to its intestinal absorption.


Assuntos
Metformina , Animais , Transporte Biológico , Células CACO-2 , Humanos , Absorção Intestinal , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Ratos , Tiamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA