Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Environ Chem Eng ; 12(1)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38576544

RESUMO

Benzene is a carcinogenic volatile organic compound (VOC) that is ubiquitously detected in enclosed spaces due to emissions from cooking activities, building materials, and cleaning products. To remove benzene and other VOCs from indoor air and protect public health, traditional fabric filters have been modified to contain activated carbons to enhance the filtration efficacy. In this study, composites derived from natural clay minerals and activated carbon were individually green-engineered with chlorophylls and were attached to the surface of filter materials. These systems were assessed for their adsorption of benzene from air using in vitro and in silico methods. Isothermal, thermodynamic, and kinetic experiments indicated that all green-engineered composites had improved binding profiles for benzene, as demonstrated by increased binding affinities (Kf ≥ 900 vs 472) and lower values of Gibbs free energy (ΔG = -16.8 vs -15.2) compared to activated carbon. Adsorption of benzene to all composites was achieved quickly (< 30 min), and the green-engineered composites also showed low levels of desorption (≤ 25%). While free chlorophyll is known to be photosensitive, chlorophylls in the green-engineered composites showed photostability and maintained high binding rates (≥ 70%). Additionally, the in silico simulations demonstrated the significant contribution of chlorophyll for the overall binding of benzene in clay systems and that chlorophyll could contribute to benzene binding in the carbon-based systems. Together, these studies indicated that novel, green-engineered composite materials can be effective filter sorbents to enhance the removal of benzene from air.

2.
ACS Appl Bio Mater ; 7(4): 2309-2324, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478987

RESUMO

Peptide-based nanomaterials can serve as promising drug delivery agents, facilitating the release of active pharmaceutical ingredients while reducing the risk of adverse reactions. We previously demonstrated that Cyclo-Histidine-Histidine (Cyclo-HH), co-assembled with cancer drug Epirubicin, zinc, and nitrate ions, can constitute an attractive drug delivery system, combining drug self-encapsulation, enhanced fluorescence, and the ability to transport the drug into cells. Here, we investigated both computationally and experimentally whether Cyclo-HH could co-assemble, in the presence of zinc and nitrate ions, with other cancer drugs with different physicochemical properties. Our studies indicated that Methotrexate, in addition to Epirubicin and its epimer Doxorubicin, and to a lesser extent Mitomycin-C and 5-Fluorouracil, have the capacity to co-assemble with Cyclo-HH, zinc, and nitrate ions, while a significantly lower propensity was observed for Cisplatin. Epirubicin, Doxorubicin, and Methorexate showed improved drug encapsulation and drug release properties, compared to Mitomycin-C and 5-Fluorouracil. We demonstrated the biocompatibility of the co-assembled systems, as well as their ability to intracellularly release the drugs, particularly for Epirubicin, Doxorubicin, and Methorexate. Zinc and nitrate were shown to be important in the co-assembly, coordinating with drugs and/or Cyclo-HH, thereby enabling drug-peptide as well as drug-drug interactions in successfully formed nanocarriers. The insights could be used in the future design of advanced cancer therapeutic systems with improved properties.


Assuntos
Antineoplásicos , Neoplasias , Epirubicina/uso terapêutico , Histidina/química , Mitomicina , Nitratos , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Doxorrubicina/uso terapêutico , Doxorrubicina/química , Peptídeos/química , Fluoruracila/uso terapêutico , Zinco , Neoplasias/tratamento farmacológico
3.
Comput Struct Biotechnol J ; 23: 417-430, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38223341

RESUMO

ß-Structure-rich amyloid fibrils are hallmarks of several diseases, including Alzheimer's (AD), Parkinson's (PD), and type 2 diabetes (T2D). While amyloid fibrils typically consist of parallel ß-sheets, the anti-parallel ß-hairpin is a structural motif accessible to amyloidogenic proteins in their monomeric and oligomeric states. Here, to investigate implications of ß-hairpins in amyloid formation, potential ß-hairpin-forming amyloidogenic segments in the human proteome were predicted based on sequence similarity with ß-hairpins previously observed in Aß, α-synuclein, and islet amyloid polypeptide, amyloidogenic proteins associated with AD, PD, and T2D, respectively. These three ß-hairpins, established upon binding to the engineered binding protein ß-wrapin AS10, are characterized by proximity of two sequence segments rich in hydrophobic and aromatic amino acids, with high ß-aggregation scores according to the TANGO algorithm. Using these criteria, 2505 potential ß-hairpin-forming amyloidogenic segments in 2098 human proteins were identified. Characterization of a test set of eight protein segments showed that seven assembled into Thioflavin T-positive aggregates and four formed ß-hairpins in complex with AS10 according to NMR. One of those is a segment of prostatic acid phosphatase (PAP) comprising amino acids 185-208. PAP is naturally cleaved into fragments, including PAP(248-286) which forms functional amyloid in semen. We find that PAP(185-208) strongly decreases the protein concentrations required for fibril formation of PAP(248-286) and of another semen amyloid peptide, SEM1(86-107), indicating that it promotes nucleation of semen amyloids. In conclusion, ß-hairpin-forming amyloidogenic protein segments could be identified in the human proteome with potential roles in functional or disease-related amyloid formation.

4.
Water Res ; 249: 120944, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070346

RESUMO

Human exposure to micro- and nanoplastics (MNPs) commonly occurs through the consumption of contaminated drinking water. Among these, polystyrene (PS) is well-characterized and is one of the most abundant MNPs, accounting for 10 % of total plastics. Previous studies have focused on carbonaceous materials to remove MNPs by filtration, but most of the work has involved microplastics since nanoplastics (NPs) are smaller in size and more difficult to measure and remove. To address this need, green-engineered chlorophyll-amended sodium and calcium montmorillonites (SMCH and CMCH) were tested for their ability to bind and detoxify parent and fluorescently labeled PSNP using in vitro, in silico, and in vivo assays. In vitro dosimetry, isothermal analyses, thermodynamics, and adsorption/desorption kinetic models demonstrated 1) high binding capacities (173-190 g/kg), 2) high affinities (103), and 3) chemisorption as suggested by low desorption (≤42 %) and high Gibbs free energy and enthalpy (>|-20| kJ/mol) in the Langmuir and pseudo-second-order models. Computational dynamics simulations for 30 and 40 monomeric units of PSNP depicted that chlorophyll amendments increased the binding percentage and contributed to the sustained binding. Also, 64 % of PSNP bind to both the head and tail of chlorophyll aggregates, rather than the head or tail only. Fluorescent PSNP at 100 nm and 30 nm that were exposed to Hydra vulgaris showed concentration-dependent toxicity at 20-100 µg/mL. Importantly, the inclusion of 0.05-0.3 % CMCH and SMCH significantly (p ≤ 0.01) and dose-dependently reduced PSNP toxicity in morphological changes and feeding rate. The bioassay validated the in vitro and in silico predictions about adsorption efficacy and mechanisms and suggested that CMCH and SMCH are efficacious binders for PSNP in water.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Humanos , Argila/química , Água/química , Plásticos , Microplásticos , Adsorção , Clorofila/análise , Poluentes Químicos da Água/análise
5.
Comput Struct Biotechnol J ; 21: 3541-3556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37501707

RESUMO

To date, over 150 chemical modifications to the four canonical RNA bases have been discovered, known collectively as the epitranscriptome. Many of these modifications have been implicated in a variety of cellular processes and disease states. Additional work has been done to identify proteins known as "readers" that selectively interact with RNAs that contain specific chemical modifications. Protein interactomes with N6-methyladenosine (m6A), N1-methyladenosine (m1A), N5-methylcytosine (m5C), and 8-oxo-7,8-dihydroguanosine (8-oxoG) have been determined, mainly through experimental advances in proteomics techniques. However, relatively few proteins have been confirmed to bind directly to RNA containing these modifications. Furthermore, for many of these protein readers, the exact binding mechanisms as well as the exclusivity for recognition of modified RNA species remain elusive, leading to questions regarding their roles within different cellular processes. In the case of the YT-521B homology (YTH) family of proteins, both experimental and in silico techniques have been leveraged to provide valuable biophysical insights into the mechanisms of m6A recognition at atomic resolution. To date, the YTH family is one of the best characterized classes of readers. Here, we review current knowledge about epitranscriptome recognition of the YTH domain proteins from previously published experimental and computational studies. We additionally outline knowledge gaps for proteins beyond the well-studied human YTH domains and the current in silico techniques and resources that can enable investigation of protein interactions with modified RNA outside of the YTH-m6A context.

6.
J Phys Chem B ; 127(9): 1857-1871, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36812392

RESUMO

The design of novel cancer drug nanocarriers is critical in the framework of cancer therapeutics. Nanomaterials are gaining increased interest as cancer drug delivery systems. Self-assembling peptides constitute an emerging novel class of highly attractive nanomaterials with highly promising applications in drug delivery, as they can be used to facilitate drug release and/or stability while reducing side effects. Here, we provide a perspective on peptide self-assembled nanocarriers for cancer drug delivery and highlight the aspects of metal coordination, structure stabilization, and cyclization, as well as minimalism. We review particular challenges in nanomedicine design criteria and, finally, provide future perspectives on addressing a portion of the challenges via self-assembling peptide systems. We consider that the intrinsic advantages of such systems, along with the increasing progress in computational and experimental approaches for their study and design, could possibly lead to novel classes of single or multicomponent systems incorporating such materials for cancer drug delivery.


Assuntos
Antineoplásicos , Nanoestruturas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Nanoestruturas/química , Peptídeos/química , Portadores de Fármacos
7.
Water Res ; 221: 118788, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777320

RESUMO

After disasters, such as forest fires and oil spills, high levels of benzene (> 1 ppm) can be detected in the water, soil, and air surrounding the disaster site, which poses a significant health risk to human, animal, and plant populations in the area. While remediation methods with activated carbons have been employed, these strategies are limited in their effectiveness due to benzene's inherent stability and limited retention to most surfaces. To address this problem, calcium and sodium montmorillonite clays were amended with a mixture of chlorophyll (a) and (b); their binding profile and ability to detoxify benzene were characterized using in vitro, in silico, and well-established ecotoxicological (ecotox) bioassay methods. The results of in vitro isothermal analyses indicated that chlorophyll-amended clays showed an improved binding profile in terms of an increased binding affinity (Kf = 668 vs 67), increased binding percentage (52% vs 11%), and decreased rates of desorption (28% vs 100%), compared to the parent clay. In silico simulation studies elucidated the adsorption mechanism and validated that the addition of the chlorophyll to the clays increased the adsorption of benzene through Van der Waals forces (i.e., aromatic π-π stacking and alkyl-π interactions). The sorbents were also assessed for their safety and ability to protect sensitive ecotox organisms (Lemna minor and Caenorhabditis elegans) from the toxicity of benzene. The inclusion of chlorophyll-amended clays in the culture medium significantly reduced benzene toxicity to both organisms, protecting C. elegans by 98-100% from benzene-induced mortality and enhancing the growth rates of L. minor. Isothermal analyses, in silico modeling, and independent bioassays all validated our proof of concept that benzene can be sequestered, tightly bound, and stabilized by chlorophyll-amended montmorillonite clays. These novel sorbents can be utilized during disasters and emergencies to decrease unintentional exposures from contaminated water, soil, and air.


Assuntos
Bentonita , Benzeno , Adsorção , Silicatos de Alumínio , Animais , Bentonita/química , Caenorhabditis elegans , Clorofila , Argila/química , Humanos , Solo , Água/química
8.
Biophys Chem ; 286: 106805, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35417810

RESUMO

ß-wrapins are engineered binding proteins of which different mutants can bind and sequester amyloidogenic proteins amyloid-ß (Aß), islet amyloid polypeptide (IAPP), and α-synuclein (α-syn), thereby inhibiting their aggregation into amyloid fibrils. ß-wrapin AS10 is capable of binding and sequestering all three amyloidogenic monomers with micro-molar affinity, with its N-terminal domains remaining flexible and non-functional. Here, we computationally investigated the hypothesis that the anti-amyloid properties of AS10 can be amplified by redesigning its currently non-functional N-terminal domain with particular combinations of canonical and non-canonical amino acids (ncAAs) that can mimic the binding and inhibitory anti-amyloid function of curcumin, using a combination of molecular docking and molecular dynamics simulations. Our simulations suggest that the inhibitory mechanism attributed to the binding of the computationally designed AS10 N-terminal domain to the Aß fibril can act simultaneously to its sequestering properties for Aß which are attributed to the core of AS10. Thus, our study proposes that the N-terminal domain of AS10 can be further modified to amplify its anti-amyloid properties, resulting in a ß-wrapin that may simultaneously prohibit elongation to existing amyloid fibrils and also sequester amyloid monomers.


Assuntos
Amiloidose , Curcumina , Sequência de Aminoácidos , Aminoácidos , Amiloide/química , Peptídeos beta-Amiloides/química , Proteínas Amiloidogênicas/metabolismo , Curcumina/química , Curcumina/farmacologia , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Simulação de Acoplamento Molecular
9.
Methods Mol Biol ; 2405: 179-203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298815

RESUMO

Our published studies on the self- and co-assembly of cyclo-HH peptides demonstrated their capacity to coordinate with Zn(II), their enhanced photoluminescence and their ability to self-encapsulate epirubicin, a chemotherapy drug. Here, we provide a detailed description of computational and experimental methodology for the study of cyclo-HH self- and co-assembling mechanisms, photoluminescence, and drug encapsulation properties. We outline the experimental protocols, which involve fluorescence spectroscopy, transmission electron microscopy, and atomic force microscopy protocols, as well as the computational protocols, which involve structural and energetic analysis of the assembled nanostructures. We suggest that the computational and experimental methods presented here can be generalizable, and thus can be applied in the investigation of self- and co-assembly systems involving other short peptides, encapsulating compounds and binding to ions, beyond the particular ones presented here.


Assuntos
Nanoestruturas , Peptídeos , Íons , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Peptídeos/química
10.
Environ Res ; 205: 112433, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875259

RESUMO

Consumption of food and water contaminated with per- and polyfluoroalkyl substances (PFAS) presents a significant risk for human exposure. There is limited data on high affinity sorbents that can be used to reduce the bioavailability of PFAS from soil and translocation to plants and garden produce. To address this need, montmorillonite clay was amended with the nutrients carnitine and choline to increase the hydrophobicity of the sorbent and the interlayer spacing. In this study, the binding of PFOA (perfluorooctanoic acid) and PFOS (perfluorooctanesulfonic acid) to parent and amended clays was characterized. Isothermal analyses were conducted at pH 7 and ambient temperature to simulate environmentally-relevant conditions. The data for all tested sorbents fit the Langmuir model indicating saturable binding sites with high capacities and affinities under neutral conditions. Amended montmorillonite clays had increased capacities for PFOA and PFOS (0.51-0.71 mol kg-1) compared to the parent clay (0.37-0.49 mol kg-1). Molecular dynamics (MD) simulations suggested that hydrophobic and electrostatic interactions at the terminal fluorinated carbon chains of PFAS compounds were major modes of surface interaction. The safety and efficacy of the clays were confirmed in a living organism (Lemna minor), where clays (at 0.1% inclusion) allowed for increased growth compared to PFOA and PFOS controls (p ≤ 0.01). Importantly, soil studies showed that 2% sorbent inclusion could significantly reduce PFAS bioavailability from soil (up to 74%). Studies in plants demonstrated that inclusion of 2% sorbent significantly reduced PFAS residues in cucumber plants (p ≤ 0.05). These results suggest that nutrient-amended clays could be included in soil to decrease PFAS bioavailability and translocation of PFAS to plants.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Bentonita/química , Disponibilidade Biológica , Argila/química , Fluorocarbonos/análise , Humanos , Solo
11.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502542

RESUMO

Supramolecular hydrogels formed by the self-assembly of amino-acid based gelators are receiving increasing attention from the fields of biomedicine and material science. Self-assembled systems exhibit well-ordered functional architectures and unique physicochemical properties. However, the control over the kinetics and mechanical properties of the end-products remains puzzling. A minimal alteration of the chemical environment could cause a significant impact. In this context, we report the effects of modifying the position of a single atom on the properties and kinetics of the self-assembly process. A combination of experimental and computational methods, used to investigate double-fluorinated Fmoc-Phe derivatives, Fmoc-3,4F-Phe and Fmoc-3,5F-Phe, reveals the unique effects of modifying the position of a single fluorine on the self-assembly process, and the physical properties of the product. The presence of significant physical and morphological differences between the two derivatives was verified by molecular-dynamics simulations. Analysis of the spontaneous phase-transition of both building blocks, as well as crystal X-ray diffraction to determine the molecular structure of Fmoc-3,4F-Phe, are in good agreement with known changes in the Phe fluorination pattern and highlight the effect of a single atom position on the self-assembly process. These findings prove that fluorination is an effective strategy to influence supramolecular organization on the nanoscale. Moreover, we believe that a deep understanding of the self-assembly process may provide fundamental insights that will facilitate the development of optimal amino-acid-based low-molecular-weight hydrogelators for a wide range of applications.


Assuntos
Aminoácidos/química , Fluorenos/química , Halogenação , Simulação de Dinâmica Molecular , Fenilalanina/química , Algoritmos , Hidrogéis/química , Cinética , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Peso Molecular , Transição de Fase , Fenômenos Físicos , Reologia , Difração de Raios X
12.
ACS Omega ; 6(22): 14090-14103, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34124432

RESUMO

An attractive approach to minimize human and animal exposures to toxic environmental contaminants is the use of safe and effective sorbent materials to sequester them. Montmorillonite clays have been shown to tightly bind diverse toxic chemicals. Due to their promise as sorbents to mitigate chemical exposures, it is important to understand their function and rapidly screen and predict optimal clay-chemical combinations for further testing. We derived adsorption free-energy values for a structurally and physicochemically diverse set of toxic chemicals using experimental adsorption isotherms performed in the current and previous studies. We studied the diverse set of chemicals using minimalistic MD simulations and showed that their interaction energies with calcium montmorillonite clays calculated using simulation snapshots in combination with their net charge and their corresponding solvent's dielectric constant can be used as inputs to a minimalistic model to predict adsorption free energies in agreement with experiments. Additionally, experiments and computations were used to reveal structural and physicochemical properties associated with chemicals that can be adsorbed to calcium montmorillonite clay. These properties include positively charged groups, phosphine groups, halide-rich moieties, hydrogen bond donor/acceptors, and large, rigid structures. The combined experimental and computational approaches used in this study highlight the importance and potential applicability of analogous methods to study and design novel advanced sorbent systems in the future, broadening their applicability for environmental contaminants.

13.
Angew Chem Int Ed Engl ; 60(31): 17164-17170, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34014019

RESUMO

The structural arrangement of amino acid residues in native enzymes underlies their remarkable catalytic properties, thus providing a notable point of reference for designing potent yet simple biomimetic catalysts. Herein, we describe a minimalistic approach to construct a dipeptide-based nano-superstructure with enzyme-like activity. The self-assembled biocatalyst comprises one peptide as a single building block, readily synthesized from histidine. Through coordination with zinc ion, the peptide self-assembly procedure allows the formation of supramolecular ß-sheet ordered nanocrystals, which can be used as basic units to further construct higher-order superstructure. As a result, remarkable hydrolysis activity and enduring stability are demonstrated. Our work exemplifies the use of a bioinspired supramolecular assembly approach to develop next-generation biocatalysts for biotechnological applications.


Assuntos
Nanopartículas/química , Peptídeos/química , Histidina/química , Hidrólise , Tamanho da Partícula , Peptídeos/síntese química
14.
ACS Nano ; 15(4): 6530-6539, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33844499

RESUMO

Molecular oxygen (O2) is a highly reactive oxidizing agent and is harmful to many biological and industrial systems. Although O2 often interacts via metals or reducing agents, a binding mechanism involving an organic supramolecular structure has not been described to date. In this work, the prominent dipeptide hydrogelator fluorenylmethyloxycarbonyl-diphenylalanine is shown to encage O2 and significantly limit its diffusion and penetration through the hydrogel. Molecular dynamics simulations suggested that the O2 binding mechanism is governed by pockets formed between the aromatic rings in the supramolecular structure of the gel, which bind O2 through hydrophobic interactions. This phenomenon is harnessed to maintain the activity of the O2-hypersensitive enzyme [FeFe]-hydrogenase, which holds promising potential for utilizing hydrogen gas for sustainable energy applications. Hydrogenase encapsulation within the gel allows hydrogen production following exposure to ambient O2. This phenomenon may lead to utilization of this low molecular weight gelator in a wide range of O2-sensitive applications.


Assuntos
Hidrogenase , Oxigênio , Hidrogéis , Hidrogênio , Peptídeos
15.
Water Res ; 188: 116534, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125992

RESUMO

Humans and animals are frequently exposed to PFAS (per- and polyfluoroalkyl substances) through drinking water and food; however, no therapeutic sorbent strategies have been developed to mitigate this problem. Montmorillonites amended with the common nutrients, carnitine and choline, were characterized for their ability to bind 4 representative PFAS (PFOA, PFOS, GenX, and PFBS). Adsorption/desorption isothermal analysis showed that PFOA, PFOS (and a mixture of the two) fit the Langmuir model with high binding capacity, affinity and enthalpy at conditions simulating the stomach. A low percentage of desorption occurred at conditions simulating the intestine. The results suggested that hydrophobic and electrostatic interactions, and hydrogen bonding were responsible for sequestering PFAS into clay interlayers. Molecular dynamics (MD) simulations suggested the key mode of interaction of PFAS was through fluorinated carbon chains, and confirmed that PFOA and PFOS had enhanced binding to amended clays compared to GenX and PFBS. The safety and efficacy of amended montmorillonite clays were confirmed in Hydra vulgaris, where a mixture of amended sorbents delivered the highest protection against a PFAS mixture. These important results suggest that the inclusion of edible, nutrient-amended clays with optimal affinity, capacity, and enthalpy can be used to decrease the bioavailability of PFAS from contaminated drinking water and diets.


Assuntos
Bentonita , Fluorocarbonos , Adsorção , Animais , Argila , Humanos , Nutrientes
16.
Toxicol Sci ; 180(1): 148-159, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33263770

RESUMO

Hydroxylated chalcones are phytochemicals which are biosynthetic precursors of flavonoids and their 1,3-diaryl-prop-2-en-1-one structure is used as a scaffold for drug development. In this study, the structure-dependent activation of aryl hydrocarbon receptor (AhR)-responsive CYP1A1, CYP1B1, and UGT1A1 genes was investigated in Caco2 colon cancer cells and in non-transformed young adult mouse colonocytes (YAMC) cells. The effects of a series of di- and trihydroxychalcones as AhR agonists was structure dependent with maximal induction of CYP1A1, CYP1B1, and UGT1A1 in Caco2 cells observed for compounds containing 2,2'-dihydroxy substituents and this included 2,2'-dihydroxy-, 2,2',4'-trihydroxy-, and 2,2',5'-trihydroxychalcones. In contrast, 2',4,5'-, 2'3',4'-, 2',4,4'-trihydroxy, and 2',3-, 2',4-, 2',4'-, and 2',5-dihydroxychalcones exhibited low to non-detectable AhR activity in Caco2 cells. In addition, all of the hydroxychalcones exhibited minimal to non-detectable activity in YAMC cells, whereas 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced CYP1A1, CYP1B1, and UGT1A1 in Caco2 and YAMC cells. The activity of AhR-active chalcones was confirmed by determining their effects in AhR-deficient Caco2 cells. In addition, 2,2'-dihydroxychalcone induced CYP1A1 protein and formation of an AhR-DNA complex in an in vitro assay. Simulation and modeling studies of hydroxylated chalcones confirmed their interactions with the AhR ligand-binding domain and were consistent with their structure-dependent activity as AhR ligands. Thus, this study identifies hydroxylated chalcones as AhR agonists with potential for these phytochemicals to impact AhR-mediated colonic pathways.


Assuntos
Chalconas , Dibenzodioxinas Policloradas , Animais , Células CACO-2 , Chalconas/toxicidade , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Humanos , Camundongos , Ligação Proteica , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
17.
Comput Chem Eng ; 1432020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33122868

RESUMO

Montmorillonite clays could be promising sorbents to mitigate toxic compound exposures. Bisphenols A (BPA) and S (BPS) as well as phthalates, dibutyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP), are ubiquitous environmental contaminants linked to adverse health effects. Here, we combined computational and experimental methods to investigate the ability of montmorillonite clays to sorb these compounds. Molecular dynamics simulations predicted that parent, unamended, clay has higher binding propensity for BPA and BPS than for DBP and DEHP; carnitine-amended clay improved BPA and BPS binding, through carnitine simultaneously anchoring to the clay through its quaternary ammonium cation and forming hydrogen bonds with BPA and BPS. Experimental isothermal analysis confirmed that carnitine-amended clay has enhanced BPA binding capacity, affinity and enthalpy. Our studies demonstrate how computational and experimental methods, combined, can characterize clay binding and sorption of toxic compounds, paving the way for future investigation of clays to reduce BPA and BPS exposure.

19.
Adv Funct Mater ; 30(10)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32256278

RESUMO

The self-assembly of cyclodipeptides composed of natural aromatic amino acids into supramolecular structures of diverse morphologies with intrinsic emissions in the visible light region is demonstrated. The assembly process can be halted at the initial oligomerization by coordination with zinc ions, with the most prominent effect observed for cyclo-dihistidine (cyclo-HH). This process is mediated by attracting and pulling of the metal ions from the solvent into the peptide environment, rather than by direct interaction in the solvent as commonly accepted, thus forming an "environment-switching" doping mechanism. The doping induces a change of cyclo-HH molecular configurations and leads to the formation of pseudo "core/shell" clusters, comprising peptides and zinc ions organized in ordered conformations partially surrounded by relatively amorphous layers, thus significantly enhancing the emissions and allowing the application of the assemblies for ecofriendly color-converted light emitting diodes. These findings shed light into the very initial coordination procedure and elucidate an alternative mechanism of metal ions doping on biomolecules, thus presenting a promising avenue for integration of the bioorganic world and the optoelectronic field.

20.
ACS Nano ; 14(3): 2798-2807, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32013408

RESUMO

Peptide self-assembly has attracted extensive interest in the field of eco-friendly optoelectronics and bioimaging due to its inherent biocompatibility, intrinsic fluorescence, and flexible modulation. However, the practical application of such materials was hindered by the relatively low quantum yield of such assemblies. Here, inspired by the molecular structure of BFPms1, we explored the "self-assembly locking strategy" to design and manipulate the assembly of metal-stabilized cyclic(l-histidine-d-histidine) into peptide material with the high-fluorescence efficiency. We used this bioorganic material as an emissive layer in photo- and electroluminescent prototypes, demonstrating the feasibility of utilizing self-assembling peptides to fabricate a biointegrated microchip that incorporates eco-friendly and tailored optoelectronic properties. We further employed a "self-encapsulation" strategy for constructing an advanced nanocarrier with integrated in situ monitoring. The strategy of the supramolecular capture of functional components exemplifies the use of bioinspired organic chemistry to provide frontiers of smart materials, potentially allowing a better interface between sustainable optoelectronics and biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA