Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1182499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426074

RESUMO

Brain-derived neurotrophic factor (BDNF) promotes the survival and functioning of neurons in the central nervous system and contributes to proper functioning of many non-neural tissues. Although the regulation and role of BDNF have been extensively studied, a rigorous analysis of the expression dynamics of BDNF and its receptors TrkB and p75NTR is lacking. Here, we have analyzed more than 3,600 samples from 18 published RNA sequencing datasets, and used over 17,000 samples from GTEx, and ~ 180 samples from BrainSpan database, to describe the expression of BDNF in the developing mammalian neural and non-neural tissues. We show evolutionarily conserved dynamics and expression patterns of BDNF mRNA and non-conserved alternative 5' exon usage. Finally, we also show increasing BDNF protein levels during murine brain development and BDNF protein expression in several non-neural tissues. In parallel, we describe the spatiotemporal expression pattern of BDNF receptors TrkB and p75NTR in both murines and humans. Collectively, our in-depth analysis of the expression of BDNF and its receptors gives insight into the regulation and signaling of BDNF in the whole organism throughout life.

2.
Front Mol Neurosci ; 15: 1033224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407762

RESUMO

Transcription factor 4 (TCF4) belongs to the class I basic helix-loop-helix family of transcription factors (also known as E-proteins) and is vital for the development of the nervous system. Aberrations in the TCF4 gene are associated with several neurocognitive disorders such as schizophrenia, intellectual disability, post-traumatic stress disorder, depression, and Pitt-Hopkins Syndrome, a rare but severe autism spectrum disorder. Expression of the human TCF4 gene can produce at least 18 N-terminally distinct protein isoforms, which activate transcription with different activities and thus may vary in their function during development. We used long-read RNA-sequencing and western blot analysis combined with the analysis of publicly available short-read RNA-sequencing data to describe both the mRNA and protein expression of the many distinct TCF4 isoforms in rodent and human neural and nonneural tissues. We show that TCF4 mRNA and protein expression is much higher in the rodent brain compared to nonneural tissues. TCF4 protein expression is highest in the rodent cerebral cortex and hippocampus, where expression peaks around birth, and in the rodent cerebellum, where expression peaks about a week after birth. In human, highest TCF4 expression levels were seen in the developing brain, although some nonneural tissues displayed comparable expression levels to adult brain. In addition, we show for the first time that out of the many possible TCF4 isoforms, the main TCF4 isoforms expressed in the rodent and human brain and other tissues are TCF4-B, -C, -D, -A, and-I. Taken together, our isoform specific analysis of TCF4 expression in different tissues could be used for the generation of gene therapy applications for patients with TCF4-associated diseases.

3.
Dis Model Mech ; 13(7)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32641419

RESUMO

Mammalian transcription factor 4 (TCF4) has been linked to schizophrenia and intellectual disabilities, such as Pitt-Hopkins syndrome (PTHS). Here, we show that similarly to mammalian TCF4, fruit fly orthologue Daughterless (Da) is expressed widely in the Drosophila brain. Furthermore, silencing of da, using several central nervous system-specific Gal4 driver lines, impairs appetitive associative learning of the larvae and leads to decreased levels of the synaptic proteins Synapsin (Syn) and Discs large 1 (Dlg1), suggesting the involvement of Da in memory formation. Here, we demonstrate that Syn and dlg1 are direct target genes of Da in adult Drosophila heads, as Da binds to the regulatory regions of these genes and the modulation of Da levels alter the levels of Syn and dlg1 mRNA. Silencing of da also affects negative geotaxis of the adult flies, suggesting the impairment of locomotor function. Overall, our findings suggest that Da regulates Drosophila larval memory and adult negative geotaxis, possibly via its synaptic target genes Syn and dlg1 These behavioural phenotypes can be further used as a PTHS model to screen for therapeutics.This article has an associated First Person interview with the first author of the paper.


Assuntos
Aprendizagem por Associação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hiperventilação/metabolismo , Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Proteoma , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/embriologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Fácies , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Hiperventilação/genética , Hiperventilação/fisiopatologia , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Larva/genética , Larva/metabolismo , Atividade Motora , Transdução de Sinais , Sinapses/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
4.
Biol Open ; 4(12): 1762-71, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26621827

RESUMO

Pitt-Hopkins syndrome (PTHS) is caused by haploinsufficiency of Transcription factor 4 (TCF4), one of the three human class I basic helix-loop-helix transcription factors called E-proteins. Drosophila has a single E-protein, Daughterless (Da), homologous to all three mammalian counterparts. Here we show that human TCF4 can rescue Da deficiency during fruit fly nervous system development. Overexpression of Da or TCF4 specifically in adult flies significantly decreases their survival rates, indicating that these factors are crucial even after development has been completed. We generated da transgenic fruit fly strains with corresponding missense mutations R578H, R580W, R582P and A614V found in TCF4 of PTHS patients and studied the impact of these mutations in vivo. Overexpression of wild type Da as well as human TCF4 in progenitor tissues induced ectopic sensory bristles and the rough eye phenotype. By contrast, overexpression of Da(R580W) and Da(R582P) that disrupt DNA binding reduced the number of bristles and induced the rough eye phenotype with partial lack of pigmentation, indicating that these act dominant negatively. Compared to the wild type, Da(R578H) and Da(A614V) were less potent in induction of ectopic bristles and the rough eye phenotype, respectively, suggesting that these are hypomorphic. All studied PTHS-associated mutations that we introduced into Da led to similar effects in vivo as the same mutations in TCF4 in vitro. Consequently, our Drosophila models of PTHS are applicable for further studies aiming to unravel the molecular mechanisms of this disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA