Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(7): 107081, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37426349

RESUMO

The brown rat (Rattus norvegicus) is one of the major animals both in the laboratory and in urban centers. Brown rats communicate various types of information using pheromones, the chemicals that mediate intra-species communication in minute amounts. Therefore, analyses of pheromones would further our understanding of the mode of life of rats. We show that a minute amount of 2-methylbutyric acid (2-MB) released from the neck region can ameliorate fear responses both in laboratory rats and in wild brown rats. Based on these findings, we conclude that 2-MB is an appeasing pheromone in the brown rat. A better understanding of rats themselves would allow us to perform more effective ecologically based research on social skills and pest management campaigns with low animal welfare impacts, which might contribute to furthering the advancement of science and improving public health.

2.
Proc Natl Acad Sci U S A ; 111(52): 18751-6, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512532

RESUMO

Chemical communication plays an important role in the social lives of various mammalian species. Some of these chemicals are called pheromones. Rats release a specific odor into the air when stressed. This stress-related odor increases the anxiety levels of other rats; therefore, it is possible that the anxiety-causing molecules are present in the stress-related odorants. Here, we have tried to identify the responsible molecules by using the acoustic startle reflex as a bioassay system to detect anxiogenic activity. After successive fractionation of the stress-related odor, we detected 4-methylpentanal and hexanal in the final fraction that still possessed anxiogenic properties. Using synthetic molecules, we found that minute amounts of the binary mixture, but not either molecule separately, increased anxiety in rats. Furthermore, we determined that the mixture increased a specific type of anxiety and evoked anxiety-related behavioral responses in an experimental model that was different from the acoustic startle reflex. Analyses of neural mechanisms proposed that the neural circuit related to anxiety was only activated when the two molecules were simultaneously perceived by two olfactory systems. We concluded that the mixture is a pheromone that increases anxiety in rats. To our knowledge, this is the first study identifying a rat pheromone. Our results could aid further research on rat pheromones, which would enhance our understanding of chemical communication in mammals.


Assuntos
Aldeídos , Ansiedade , Comportamento Animal/efeitos dos fármacos , Caproatos , Feromônios , Reflexo de Sobressalto/efeitos dos fármacos , Aldeídos/química , Aldeídos/farmacologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/fisiopatologia , Caproatos/química , Caproatos/farmacologia , Masculino , Bulbo Olfatório/fisiopatologia , Feromônios/química , Feromônios/farmacologia , Ratos , Ratos Wistar
3.
Curr Biol ; 24(6): 681-6, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24583018

RESUMO

Pheromone signals regulate conspecific behavior and physiology [1]. Releaser pheromones induce specific behavior by exerting acute effects on the neuronal response, whereas primer pheromones induce physiological changes with long-lasting effects by changing the neuroendocrine status of the recipients. In mammals, although several types of releaser pheromones have been identified [2-5], the identities of primer pheromones, as well as their mechanisms of action, remain largely unknown [6]. In sheep and goats, the seasonally anestrous endocrine state of females is changed to the estrous state upon exposure to male scents [7, 8]. This so-called "male effect" is one of the most conspicuous primer pheromone effects in mammals [9, 10]. In this study, we have identified an olfactory signal molecule that activates the central regulator of reproduction, the gonadotropin-releasing hormone (GnRH) pulse generator, in goats. Using gas chromatography-mass spectrometry to analyze male goat headspace volatiles, we identified several ethyl-branched aldehydes and ketones. We electrophysiologically demonstrated that one of these compounds, 4-ethyloctanal, activates the GnRH pulse generator in female goats. This is the first report of an olfactory molecule that has been shown to activate the central reproductive axis, and this discovery will provide a new direction for primer pheromone research.


Assuntos
Aldeídos/metabolismo , Cabras/fisiologia , Hormônio Liberador de Gonadotropina/fisiologia , Reprodução/fisiologia , Atrativos Sexuais/fisiologia , Aldeídos/isolamento & purificação , Animais , Bioensaio , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Hormônio Luteinizante/fisiologia , Masculino , Atrativos Sexuais/isolamento & purificação , Olfato/fisiologia
4.
Naturwissenschaften ; 98(9): 755-61, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21814811

RESUMO

We report that the abdominal epidermis and associated tissues are the predominant sources of male-produced pheromones in the red flour beetle, Tribolium castaneum and, for the first time, describe the stereoisomeric composition of the natural blend of isomers of the aggregation pheromone 4,8-dimethyldecanal (DMD) in this important pest species. Quantitative analyses via gas chromatography-mass spectrometry showed that the average amount of DMD released daily by single feeding males of T. castaneum was 878 ± 72 ng (SE). Analysis of different body parts identified the abdominal epidermis as the major source of aggregation pheromone; the thorax was a minor source, while no DMD was detectable in the head. No internal organs or obvious male-specific glands were associated with pheromone deposition. Complete separation of all four stereoisomers of DMD was achieved following oxidation to the corresponding acid, derivatization with (1R, 2R)- and (1S, 2S)-2-(anthracene-2,3-dicarboximido)cyclohexanol to diastereomeric esters, and their separation on reversed-phase high-performance liquid chromatography at -54°C. Analysis of the hexane eluate from Porapak-Q-collected volatiles from feeding males revealed the presence of all four isomers (4R,8R)/(4R,8S)/(4S,8R)/(4S,8S) at a ratio of approximately 4:4:1:1. A walking orientation bioassay in a wind tunnel with various blends of the four synthetic isomers further indicated that the attractive potency of the reconstituted natural blend of 4:4:1:1 was equivalent to that of the natural pheromone and greater than that of the 1:1 blend of (4R,8R)/(4R,8S) used in commercial lures.


Assuntos
Feromônios/química , Tribolium/anatomia & histologia , Tribolium/química , Aldeídos/química , Animais , Cromatografia Líquida de Alta Pressão , Epiderme/metabolismo , Masculino , Estereoisomerismo , Tribolium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA