Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Elife ; 122024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573813

RESUMO

Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.


Assuntos
Glicólise , Fosfofrutoquinase-2 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Anaerobiose , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Fosforilação Oxidativa , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
2.
Cell Rep ; 43(4): 114107, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613785

RESUMO

The production of type 1 conventional dendritic cells (cDC1s) requires high expression of the transcription factor IRF8. Three enhancers at the Irf8 3' region function in a differentiation stage-specific manner. However, whether and how these enhancers interact physically and functionally remains unclear. Here, we show that the Irf8 3' enhancers directly interact with each other and contact the Irf8 gene body during cDC1 differentiation. The +56 kb enhancer, which functions from multipotent progenitor stages, activates the other 3' enhancers through an IRF8-dependent transcription factor program, that is, in trans. Then, the +32 kb enhancer, which operates in cDC1-committed cells, reversely acts in cis on the other 3' enhancers to maintain the high expression of Irf8. Indeed, mice with compound heterozygous deletion of the +56 and +32 kb enhancers are unable to generate cDC1s. These results illustrate how multiple enhancers cooperate to induce a lineage-determining transcription factor gene during cell differentiation.


Assuntos
Diferenciação Celular , Células Dendríticas , Elementos Facilitadores Genéticos , Fatores Reguladores de Interferon , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Animais , Células Dendríticas/metabolismo , Células Dendríticas/citologia , Elementos Facilitadores Genéticos/genética , Camundongos , Camundongos Endogâmicos C57BL
3.
Mol Ther ; 32(3): 704-721, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38243602

RESUMO

mRNA vaccines are promising for cancer treatment. Efficient delivery of mRNAs encoding tumor antigens to antigen-presenting cells (APCs) is critical to elicit anti-tumor immunity. Herein, we identified a novel lipid nanoparticle (LNP) formulation, L17-F05, for mRNA vaccines by screening 34 ionizable lipids and 28 LNP formulations using human primary APCs. Subcutaneous delivery of L17-F05 mRNA vaccine encoding Gp100 and Trp2 inhibited tumor growth and prolonged the survival of mice bearing B16F10 melanoma. L17-F05 efficiently delivered mRNAs to conventional dendritic cells (cDCs) and macrophages in draining lymph nodes (dLNs). cDCs functioned as the main APCs by presenting antigens along with enhanced expression of co-stimulatory molecules. Macrophages triggered innate immune responses centered on type-I interferon (IFN-I) in dLNs. Lymph node (LN) macrophage depletion attenuated APC maturation and anti-tumor activity of L17-F05 mRNA vaccines. Loss-of-function studies revealed that L17-F05 works as a self-adjuvant by activating the stimulator of interferon genes (STING) pathway in macrophages. Collectively, the self-adjuvanticity of L17-F05 triggered innate immune responses in LN macrophages via the STING-IFN-I pathway, contributing to APC maturation and potent anti-tumor activity of L17-F05 mRNA vaccines. Our findings provide strategies for further optimization of mRNA vaccines based on the innate immune response driven by LN macrophages.


Assuntos
Vacinas Anticâncer , Vacinas de mRNA , Animais , Camundongos , Humanos , Imunidade Inata , Células Dendríticas , Macrófagos , Interferons/metabolismo , Linfonodos
4.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38113095

RESUMO

A novel actinomycete, designated RD004123T, was isolated from a soil sample collected in Hokkaido, Japan, and its taxonomic position was investigated by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain RD004123T fell within the cluster of the family Micromonosporaceae but did not form a reliable cluster with any member of the family. The similarity values between strain RD004123T and the type species of 29 genera in the family Micromonosporaceae were 91.7-97.7 %. Meanwhile, phylogenomic analyses indicated that strain RD004123T was closely related to members of the genus Phytohabitans. Strain RD004123T contained both meso-diaminopimelic acid and l-lysine as the diagnostic diamino acids of the peptidoglycan. The predominant isoprenoid quinones were MK-10(H8) and MK-10(H6), and the major fatty acids were anteiso-C17 :  0, iso-C16 :  0, iso-C15 :  0 and C17 :  0. The detected polar lipids were phosphatidylinositol mannosides, phosphatidylinositol, phosphatidylethanolamine and diphosphatidylglycerol. These chemotaxonomic features corresponded to those of the genus Phytohabitans. Meanwhile, the results of genome comparison analyses and phenotypic characterizations distinguished strain RD004123T from the other members of the genus Phytohabitans. Therefore, strain RD004123T should be assigned as representing a novel species of the genus Phytohabitans, for which the name Phytohabitans aurantiacus sp. nov. is proposed. The type strain is RD004123T (=NBRC 114997T=DSM 114330T).


Assuntos
Actinobacteria , Micromonosporaceae , Actinobacteria/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Solo , Análise de Sequência de DNA , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Fosfatidilinositóis
5.
Metabolism ; 149: 155706, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856903

RESUMO

BACKGROUND AND AIM: Dysregulation of angiotensin II type 1 receptor-associated protein (ATRAP) expression in cardiovascular, kidney, and adipose tissues is involved in the pathology of hypertension, cardiac hypertrophy, atherosclerosis, kidney injury, and metabolic disorders. Furthermore, ATRAP is highly expressed in bone marrow-derived immune cells; however, the functional role of immune cell ATRAP in obesity-related pathology remains unclear. Thus, we sought to identify the pathophysiological significance of immune cell ATRAP in the development of visceral obesity and obesity-related metabolic disorders using a mouse model of diet-induced obesity. METHODS: Initially, we examined the effect of high-fat diet (HFD)-induced obesity on the expression of immune cell ATRAP in wild-type mice. Subsequently, we conducted bone marrow transplantation to generate two types of chimeric mice: bone marrow wild-type chimeric (BM-WT) and bone marrow ATRAP knockout chimeric (BM-KO) mice. These chimeric mice were provided an HFD to induce visceral obesity, and then the effects of immune cell ATRAP deficiency on physiological parameters and adipose tissue in the chimeric mice were investigated. RESULTS: In wild-type mice, body weight increase by HFD was associated with increased expression of immune cell ATRAP. In the bone marrow transplantation experiments, BM-KO mice exhibited amelioration of HFD-induced weight gain and visceral fat expansion with small adipocytes compared BM-WT mice. In addition, BM-KO mice on the HFD showed significant improvements in white adipose tissue metabolism, inflammation, glucose tolerance, and insulin resistance, compared with BM-WT mice on the HFD. Detailed analysis of white adipose tissue revealed significant suppression of HFD-induced activation of transforming growth factor-beta signaling, a key contributor to visceral obesity, via amelioration of CD206+ macrophage accumulation in the adipose tissue of BM-KO mice. This finding suggests a relevant mechanism for the anti-obesity phenotype in BM-KO mice on the HFD. Finally, transcriptome analysis of monocytes indicated the possibility of genetic changes, such as the enhancement of interferon-γ response at the monocyte level, affecting macrophage differentiation in BM-KO mice. CONCLUSION: Collectively, our results indicate that ATRAP in bone marrow-derived immune cells plays a role in the pathogenesis of visceral obesity. The regulation of ATRAP expression in immune cells may be a key factor against visceral adipose obesity with metabolic disorders.


Assuntos
Resistência à Insulina , Obesidade Abdominal , Animais , Camundongos , Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade Abdominal/complicações , Receptor Tipo 1 de Angiotensina/metabolismo , Aumento de Peso
6.
Sci Rep ; 13(1): 11177, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429920

RESUMO

After spinal cord injury (SCI), inflammatory cells such as macrophages infiltrate the injured area, and astrocytes migrate, forming a glial scar around macrophages. The glial scar inhibits axonal regeneration, resulting in significant permanent disability. However, the mechanism through which glial scar-forming astrocytes migrate to the injury site has not been clarified. Here we show that migrating macrophages attract reactive astrocytes toward the center of the lesion after SCI. Chimeric mice with bone marrow lacking IRF8, which controls macrophage centripetal migration after SCI, showed widely scattered macrophages in the injured spinal cord with the formation of a huge glial scar around the macrophages. To determine whether astrocytes or macrophages play a leading role in determining the directions of migration, we generated chimeric mice with reactive astrocyte-specific Socs3-/- mice, which showed enhanced astrocyte migration, and bone marrow from IRF8-/- mice. In this mouse model, macrophages were widely scattered, and a huge glial scar was formed around the macrophages as in wild-type mice that were transplanted with IRF8-/- bone marrow. In addition, we revealed that macrophage-secreted ATP-derived ADP attracts astrocytes via the P2Y1 receptor. Our findings revealed a mechanism through which migrating macrophages attract astrocytes and affect the pathophysiology and outcome after SCI.


Assuntos
Gliose , Traumatismos da Medula Espinal , Animais , Camundongos , Fatores Reguladores de Interferon , Macrófagos
7.
J Immunother Cancer ; 11(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37433717

RESUMO

BACKGROUND: Immune checkpoint inhibitor (ICI) therapy has substantially improved the overall survival (OS) in patients with non-small-cell lung cancer (NSCLC); however, its response rate is still modest. In this study, we developed a machine learning-based platform, namely the Cytokine-based ICI Response Index (CIRI), to predict the ICI response of patients with NSCLC based on the peripheral blood cytokine profiles. METHODS: We enrolled 123 and 99 patients with NSCLC who received anti-PD-1/PD-L1 monotherapy or combined chemotherapy in the training and validation cohorts, respectively. The plasma concentrations of 93 cytokines were examined in the peripheral blood obtained from patients at baseline (pre) and 6 weeks after treatment (early during treatment: edt). Ensemble learning random survival forest classifiers were developed to select feature cytokines and predict the OS of patients undergoing ICI therapy. RESULTS: Fourteen and 19 cytokines at baseline and on treatment, respectively, were selected to generate CIRI models (namely preCIRI14 and edtCIRI19), both of which successfully identified patients with worse OS in two completely independent cohorts. At the population level, the prediction accuracies of preCIRI14 and edtCIRI19, as indicated by the concordance indices (C-indices), were 0.700 and 0.751 in the validation cohort, respectively. At the individual level, patients with higher CIRI scores demonstrated worse OS [hazard ratio (HR): 0.274 and 0.163, and p<0.0001 and p=0.0044 in preCIRI14 and edtCIRI19, respectively]. By including other circulating and clinical features, improved prediction efficacy was observed in advanced models (preCIRI21 and edtCIRI27). The C-indices in the validation cohort were 0.764 and 0.757, respectively, whereas the HRs of preCIRI21 and edtCIRI27 were 0.141 (p<0.0001) and 0.158 (p=0.038), respectively. CONCLUSIONS: The CIRI model is highly accurate and reproducible in determining the patients with NSCLC who would benefit from anti-PD-1/PD-L1 therapy with prolonged OS and may aid in clinical decision-making before and/or at the early stage of treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Antígeno B7-H1 , Neoplasias Pulmonares/tratamento farmacológico , Citocinas , Aprendizado de Máquina , Imunoterapia
8.
EBioMedicine ; 92: 104596, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37182269

RESUMO

BACKGROUND: Birt-Hogg-Dubé (BHD) syndrome, caused by germline alteration of folliculin (FLCN) gene, develops hybrid oncocytic/chromophobe tumour (HOCT) and chromophobe renal cell carcinoma (ChRCC), whereas sporadic ChRCC does not harbor FLCN alteration. To date, molecular characteristics of these similar histological types of tumours have been incompletely elucidated. METHODS: To elucidate renal tumourigenesis of BHD-associated renal tumours and sporadic renal tumours, we conducted whole genome sequencing (WGS) and RNA-sequencing (RNA-seq) of sixteen BHD-associated renal tumours from nine unrelated BHD patients, twenty-one sporadic ChRCCs and seven sporadic oncocytomas. We then compared somatic mutation profiles with FLCN variants and RNA expression profiles between BHD-associated renal tumours and sporadic renal tumours. FINDINGS: RNA-seq analysis revealed that BHD-associated renal tumours and sporadic renal tumours have totally different expression profiles. Sporadic ChRCCs were clustered into two distinct clusters characterized by L1CAM and FOXI1 expressions, molecular markers for renal tubule subclasses. Increased mitochondrial DNA (mtDNA) copy number with fewer variants was observed in BHD-associated renal tumours compared to sporadic ChRCCs. Cell-of-origin analysis using WGS data demonstrated that BHD-associated renal tumours and sporadic ChRCCs may arise from different cells of origin and second hit FLCN alterations may occur in early third decade of life in BHD patients. INTERPRETATION: These data further our understanding of renal tumourigenesis of these two different types of renal tumours with similar histology. FUNDING: This study was supported by JSPS KAKENHI Grants, RIKEN internal grant, and the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute (NCI), Center for Cancer Research.


Assuntos
Síndrome de Birt-Hogg-Dubé , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Birt-Hogg-Dubé/complicações , Carcinogênese , RNA , Fatores de Transcrição Forkhead
9.
Cell Rep ; 42(3): 112165, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36862552

RESUMO

Inflammatory stimuli cause a state of emergency myelopoiesis leading to neutrophil-like monocyte expansion. However, their function, the committed precursors, or growth factors remain elusive. In this study we find that Ym1+Ly6Chi monocytes, an immunoregulatory entity of neutrophil-like monocytes, arise from progenitors of neutrophil 1 (proNeu1). Granulocyte-colony stimulating factor (G-CSF) favors the production of neutrophil-like monocytes through previously unknown CD81+CX3CR1lo monocyte precursors. GFI1 promotes the differentiation of proNeu2 from proNeu1 at the cost of producing neutrophil-like monocytes. The human counterpart of neutrophil-like monocytes that also expands in response to G-CSF is found in CD14+CD16- monocyte fraction. The human neutrophil-like monocytes are discriminated from CD14+CD16- classical monocytes by CXCR1 expression and the capacity to suppress T cell proliferation. Collectively, our findings suggest that the aberrant expansion of neutrophil-like monocytes under inflammatory conditions is a process conserved between mouse and human, which may be beneficial for the resolution of inflammation.


Assuntos
Monócitos , Neutrófilos , Camundongos , Animais , Humanos , Monócitos/fisiologia , Mielopoese , Diferenciação Celular , Fator Estimulador de Colônias de Granulócitos
10.
Life (Basel) ; 13(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36836900

RESUMO

Micromonospora sp. AKA109 is a producer of akazaoxime and A-76356, whereas Micromonospora sp. AKA38 is that of levantilide C. We aimed to clarify their taxonomic positions and identify biosynthetic gene clusters (BGCs) of these compounds. In 16S rRNA gene and DNA gyrase subunit B gene (gyrB) sequence analyses, strains AKA109 and AKA38 were the most closely related to Micromonospora humidisoli MMS20-R2-29T and Micromonospora schwarzwaldensis HKI0641T, respectively. Although Micromonospora sp. AKA109 was identified as M. humidisoli by the gyrB sequence similarity and DNA-DNA relatedness based on whole genome sequences, Micromonospora sp. AKA38 was classified to a new genomospecies. M. humidisoli AKA109 harbored six type-I polyketide synthase (PKS), one type-II PKS, one type-III PKS, three non-ribosomal peptide synthetase (NRPS) and three hybrid PKS/NRPS gene clusters, among which the BGC of akazaoxime and A-76356 was identified. These gene clusters are conserved in M. humidisoli MMS20-R2-29T. Micromonospora sp. AKA38 harbored two type-I PKS, one of which was responsible for levantilide C, one type-II PKS, one type-III PKS, two NRPS and five hybrid PKS/NRPS gene clusters. We predicted products derived from these gene clusters through bioinformatic analyses. Consequently, these two strains are revealed to be promising sources for diverse non-ribosomal peptide and polyketide compounds.

11.
Res Sq ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36789440

RESUMO

After spinal cord injury (SCI), inflammatory cells such as macrophages infiltrate the injured area, and astrocytes migrate, forming a glial scar around macrophages. The glial scar inhibits axonal regeneration, resulting in significant permanent disability. However, the mechanism by which glial scar-forming astrocytes migrate to the injury site has not been clarified. Here we show that migrating macrophages attract reactive astrocytes toward the center of the lesion after SCI. Chimeric mice with bone marrow lacking IRF8, which controls macrophage centripetal migration after SCI, showed widely scattered macrophages in injured spinal cord with the formation of a huge glial scar around the macrophages. To determine whether astrocytes or macrophages play a leading role in determining the directions of migration, we generated chimeric mice with reactive astrocyte-specific Socs3 -/- mice, which showed enhanced astrocyte migration, and bone marrow from IRF8 -/- mice. In this mouse model, macrophages were widely scattered, and a huge glial scar was formed around the macrophages as in wild-type mice that were transplanted with IRF8 -/ bone marrow. In addition, we revealed that macrophage-secreted ATP-derived ADP attracts astrocytes via the P2Y1 receptor. Our findings revealed a mechanism in which migrating macrophages attracted astrocytes and affected the pathophysiology and outcome after SCI.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36827195

RESUMO

A novel actinobacterium, designated HIs16-36T, was isolated from the rhizosphere of a mangrove on Ishigaki Island, Okinawa, Japan, and its taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain HIs16-36T was closely related to the members of the genus Arthrobacter. The highest 16S rRNA gene sequence similarity was observed with Arthrobacter crystallopoietes (98.5 %), followed by Arthrobacter globiformis (97.2 %). The peptidoglycan of strain HIs16-36T was of the A4α type, with lysine as the diagnostic diamino acid. The predominant isoprenoid quinone was MK-9(H2) and the major fatty acids were anteiso-C15 : 0 and iso-C15 : 0. The polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two glycolipids. These chemotaxonomic features corresponded to those of the genus Arthrobacter. Meanwhile, the differences in some phenotypic characteristics, along with the results of average nucleotide identity and digital DNA-DNA hybridization analyses, indicated that strain HIs16-36T should be distinguished from the recognized species of the genus Arthrobacter. Therefore, strain HIs16-36T represents a novel species of the genus Arthrobacter, for which the name Arthrobacter mangrovi sp. nov. is proposed. The type strain is HIs16-36T (=NBRC 112813T=TBRC 15750T).


Assuntos
Actinobacteria , Arthrobacter , Ácidos Graxos/química , Rizosfera , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
13.
Eur J Pharm Biopharm ; 183: 61-73, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603692

RESUMO

Nucleic acid therapeutics have been utilized for gene regulation, and their recent advancement has led to approval of novel drugs for liver-related disorders. However, systemic extrahepatic delivery remains challenging. Here, we report newly designed mannose-conjugated oligonucleotides for delivering oligonucleotides to macrophages by leveraging the mannose receptor, C-type 1 (MRC1, CD206), which is abundantly expressed in macrophages. We investigated the relationship between cellular uptake and multivalency (mono to tetra) of mannose ligands or linker length and selected a trivalent-mannose ligand. Trivalent-mannose (Man3)-conjugated siRNA induced concentration-dependent gene silencing in both human CD206-overexpressing cells and human macrophages in vitro. After subcutaneous injection into mice, we observed a high distribution of Man3-conjugated oligonucleotides in the liver and pancreata as well as cellular uptake into Kupffer cells and pancreatic macrophages. A single subcutaneous injection of Man3-conjugated siRNA (10 mg/kg) targeting ß2-microglobulin (B2M) silenced B2m mRNA expression by ∼50% and decreased its protein levels in mouse pancreatic macrophages compared to those in saline-treated mice. Of note, multiple subcutaneous injections decreased B2m gene expression and B2M protein levels by ∼80% and ∼85%, respectively. These results show that mannose-conjugation with oligonucleotides is expected to help deliver oligonucleotides to macrophages and regulate gene expression in vivo, particularly in the pancreas.


Assuntos
Macrófagos , Manose , Humanos , Animais , Camundongos , RNA Interferente Pequeno , Manose/metabolismo , Macrófagos/metabolismo , Inativação Gênica , Ligantes , Pâncreas , Oligonucleotídeos
14.
J Antibiot (Tokyo) ; 76(2): 93-100, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564595

RESUMO

A polyphasic approach was used to determine the taxonomic position of a marine actinomycete, designated isolate CWH03T, which we previously reported to produce new linear azole-containing peptides spongiicolazolicins A and B. Strain CWH03T is mesophilic, neutrophilic, and halotolerant streptomycete that forms spiral spore chains on aerial mycelium. Comparative 16S rRNA gene sequencing showed that CWH03T was most closely related to Streptomyces tirandamycinicus HNM0039T (99.7%), Streptomyces spongiicola HNM0071T (99.4%), 'Streptomyces marianii' ICN19T (99.1%) and Streptomyces wuyuanensis CGMCC4.7042T (99.0%). The phylogenetic tree prepared using the 16S rRNA gene, as well as the phylogenomic tree using the genome BLAST distance phylogeny method and 81 core housekeeping genes, respectively, showed that the closest relative of strain CWH03T was S. spongiicola HNM0071T. The average nucleotide identity and digital DNA-DNA hybridization values between strains CWH03T and S. spongiicola HNM0071T were 91.46% and 44.2%, respectively, which were below the thresholds of 96% and 70% for prokaryotic conspecific assignation. The G+C content of the genomic DNA of strain CWH03T was 72.3%. Whole-cell hydrolysates of strain CWH03T contained LL-diaminopimelic acid. The predominant menaquinone was MK-9(H8) (88.3%), and the major fatty acids were iso-C16:0 (28.4%), anteiso-C15:0 (15.0%) and iso-C15:0 (12.9%). The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. Based on data obtained from phenotypic, phylogenetic, genomic, and chemotaxonomic analyses, strain CWH03T represents a novel species of the genus Streptomyces, for which the proposed name is Streptomyces pacificus sp. nov. The type strain is CWH03T ( = NBRC 114659T = TBRC 15780T).


Assuntos
Actinobacteria , Streptomyces , Actinobacteria/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
15.
Genes Cells ; 28(1): 15-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36371617

RESUMO

In mammals, primordial germ cells (PGCs) enter meiosis and differentiate into primary oocytes in embryonic ovaries. Previously, we demonstrated that meiotic gene induction and meiotic initiation were impaired in female germline cells of conditional knockout (CKO) mice lacking the Smarcb1 (Snf5) gene, which encodes a core subunit of the switching defective/sucrose non-fermenting (SWI/SNF) complex. In this study, we classified meiotic genes expressed at lower levels in Snf5 CKO females into two groups based on promoter accessibility. The promoters of 74% of these genes showed lower accessibility in mutant mice, whereas those of the remaining genes were opened without the SWI/SNF complex. Notably, the former genes included Meiosin, which encodes a transcriptional regulator essential for meiotic gene activation. The promoters of the former and the latter genes were mainly modified with H3K27me3/bivalent and H3K4me3 histone marks, respectively. A subset of the former genes was precociously activated in female PGCs deficient in polycomb repressive complexes (PRCs). Our results point to a mechanism through which the SWI/SNF complex coordinates meiotic gene activation via the remodeling of PRC-repressed genes, including Meiosin, in female germline cells.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona , Animais , Feminino , Camundongos , Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Células Germinativas/metabolismo , Mamíferos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
16.
Nat Commun ; 13(1): 6688, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335100

RESUMO

Chromosomal translocation generates the MLL-AF4 fusion gene, which causes acute leukemia of multiple lineages. MLL-AF4 is a strong oncogenic driver that induces leukemia without additional mutations and is the most common cause of pediatric leukemia. However, establishment of a murine disease model via retroviral transduction has been difficult owning to a lack of understanding of its regulatory mechanisms. Here, we show that MLL-AF4 protein is post-transcriptionally regulated by RNA-binding proteins, including those of KHDRBS and IGF2BP families. MLL-AF4 translation is inhibited by ribosomal stalling, which occurs at regulatory sites containing AU-rich sequences recognized by KHDRBSs. Synonymous mutations disrupting the association of KHDRBSs result in proper translation of MLL-AF4 and leukemic transformation. Consequently, the synonymous MLL-AF4 mutant induces leukemia in vivo. Our results reveal that post-transcriptional regulation critically controls the oncogenic activity of MLL-AF4; these findings might be valuable in developing novel therapies via modulation of the activity of RNA-binding proteins.


Assuntos
Leucemia , Proteínas de Fusão Oncogênica , Humanos , Camundongos , Criança , Animais , Proteínas de Fusão Oncogênica/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Translocação Genética , Leucemia/genética , Proteínas de Ligação a RNA/genética , Oncogenes
17.
Proc Natl Acad Sci U S A ; 119(34): e2207009119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969760

RESUMO

Classical dendritic cells (cDCs) are essential for immune responses and differentiate from hematopoietic stem cells via intermediate progenitors, such as monocyte-DC progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are activated and rapidly express host defense-related genes, such as those encoding cytokines and chemokines. Chromatin structures, including nuclear compartments and topologically associating domains (TADs), have been implicated in gene regulation. However, the extent and dynamics of their reorganization during cDC development and activation remain unknown. In this study, we comprehensively determined higher-order chromatin structures by Hi-C in DC progenitors and cDC subpopulations. During cDC differentiation, chromatin activation was initially induced at the MDP stage. Subsequently, a shift from inactive to active nuclear compartments occurred at the cDC gene loci in CDPs, which was followed by increased intra-TAD interactions and loop formation. Mechanistically, the transcription factor IRF8, indispensable for cDC differentiation, mediated chromatin activation and changes into the active compartments in DC progenitors, thereby possibly leading to cDC-specific gene induction. Using an infection model, we found that the chromatin structures of host defense-related gene loci were preestablished in unstimulated cDCs, indicating that the formation of higher-order chromatin structures prior to infection may contribute to the rapid responses to pathogens. Overall, these results suggest that chromatin structure reorganization is closely related to the establishment of cDC-specific gene expression and immune functions. This study advances the fundamental understanding of chromatin reorganization in cDC differentiation and activation.


Assuntos
Montagem e Desmontagem da Cromatina , Células Dendríticas , Células-Tronco Hematopoéticas , Animais , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Células Dendríticas/citologia , Regulação da Expressão Gênica , Camundongos
18.
iScience ; 25(6): 104463, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35874919

RESUMO

Our understanding of how each hereditary kidney cancer adapts to its tissue microenvironment is incomplete. Here, we present single-cell transcriptomes of 108,342 cells from patient specimens including from six hereditary kidney cancers. The transcriptomes displayed distinct characteristics of the cell of origin and unique tissue microenvironment for each hereditary kidney cancer. Of note, hereditary leiomyomatosis and renal cell carcinoma (HLRCC)-associated kidney cancer retained some characteristics of proximal tubules, which were completely lost in lymph node metastases and present as an avascular tumor with suppressed T cells and TREM2-high macrophages, leading to immune tolerance. Birt-Hogg-Dubé (BHD)-associated kidney cancer exhibited transcriptomic intratumor heterogeneity (tITH) with increased characteristics of intercalated cells of the collecting duct and upregulation of FOXI1-driven genes, a critical transcription factor for collecting duct differentiation. These findings facilitate our understanding of how hereditary kidney cancers adapt to their tissue microenvironment.

19.
Cell Rep ; 39(6): 110805, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545056

RESUMO

Myelodysplastic syndrome (MDS) is a clonal disorder of hematopoietic stem cells (HSCs), characterized by ineffective hematopoiesis and frequent progression to leukemia. It has long remained unresolved how MDS cells, which are less proliferative, inhibit normal hematopoiesis and eventually dominate the bone marrow space. Despite several studies implicating mesenchymal stromal or stem cells (MSCs), a principal component of the HSC niche, in the inhibition of normal hematopoiesis, the molecular mechanisms underlying this process remain unclear. Here, we demonstrate that both human and mouse MDS cells perturb bone metabolism by suppressing the osteolineage differentiation of MSCs, which impairs the ability of MSCs to support normal HSCs. Enforced MSC differentiation rescues the suppressed normal hematopoiesis in both in vivo and in vitro MDS models. Intriguingly, the suppression effect is reversible and mediated by extracellular vesicles (EVs) derived from MDS cells. These findings shed light on the novel MDS EV-MSC axis in ineffective hematopoiesis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Síndromes Mielodisplásicas , Animais , Vesículas Extracelulares/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Síndromes Mielodisplásicas/metabolismo
20.
Eur J Oral Sci ; 130(3): e12868, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474469

RESUMO

This study investigated the effect of the bonding agent application method on the dentin bond durability of a two-step adhesive utilizing a universal-adhesive-derived primer. The bonding durability of a universal adhesive was compared with those of two conventional two-step adhesives by shear bond strength testing after thermal cycling. The primer was applied (with or without phosphoric acid pre-etching), and the specimens were divided into three groups based on the bonding agent application method used as follows: (i) strong air-flow application, (ii) gentle air-flow application, and (iii) gentle air-flow + second bonding application. The shear bond strength was determined after thermal cycling. All the factors (bonding agent application method, adhesive system, and storage condition) significantly influenced the dentin shear bond strength both with and without phosphoric acid pre-etching. The specimens exposed to gentle air-flow showed a higher shear bond strength than did those exposed to strong air-flow and gentle air-flow + second bonding. The bond durability of the tested adhesive systems was influenced by the bonding agent application method, and this trend was material dependent. The G2-Bond Universal exhibited the same or greater dentin bond durability to the other two-step adhesive systems.


Assuntos
Colagem Dentária , Adesivos Dentinários , Condicionamento Ácido do Dente , Cimentos Dentários , Dentina , Adesivos Dentinários/química , Teste de Materiais , Cimentos de Resina , Resistência ao Cisalhamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA