Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Microbiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028370

RESUMO

In this study, the mercury-tolerant strain LTC105 was isolated from a contaminated soil sample collected from a molybdenum-lead mine in Luanchuan County, Henan Province, China. The strain was shown to be highly resistant to mercury, with a minimum inhibitory concentration (MIC) of 32 mg·L-1. After a 24-h incubation in LB medium with 10 mg·L-1 Hg2+, the removal, adsorption, and volatilization rates of Hg2+ were 97.37%, 7.3%, and 90.07%, respectively, indicating that the strain had significant influence on mercury removal. Based on the results of Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), the investigation revealed that the primary function of LTC105 was to encourage the volatilization of mercury. The LTC105 strain also showed strong tolerance to heavy metals such as Mn2+, Zn2+, and Pb2+. According to the results of the soil incubation test, the total mercury removal rate of the LTC105 inoculation increased by 16.34% when the initial mercury concentration of the soil was 100 mg·L-1 and by 62.28% when the initial mercury concentration of the soil was 50 mg·kg-1. These findings indicate that LTC105 has certain bioremediation ability for Hg-contaminated soil and is a suitable candidate strain for microbial remediation of heavy metal-contaminated soil in mining areas.

2.
Environ Sci Process Impacts ; 26(6): 1064-1076, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38721825

RESUMO

Cr(VI) has been a carcinogen for organisms and a hazard to human health throughout the food chain. To explore a cost-effective and efficient method for removing Cr(VI), a Cr-resistant strain named LBA108 was isolated from the soil of a molybdenum-lead mining area. It was identified as Microbacterium through biochemical tests and 16S rDNA sequence analysis. Following 48 hours of incubation in LB culture medium containing 60 mg L-1 Cr(VI), the LBA108 strain exhibited reduction and adsorption rates for Cr(VI) at 96.64% and 15.86%, respectively. The removal mechanism was subsequently confirmed through Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction analysis. In an experimental setup, radish seedlings were cultivated as test crops under varying levels of Cr stress (ranging from 0 to 7 mg L-1) in a hydroponic experiment. With the inoculation of the LBA108 strain, the fresh weight of radish seedlings increased by 2.05 times and plant length increased by 34.5% under 7 mg L-1 Cr stress. In addition, the plant produced more antioxidant enzymes/enhanced antioxidant enzyme activities such as superoxide dismutase and catalase to prevent oxidative stress. Under Cr stress (6 mg L-1), the accumulation of Cr in rhizomes of radish seedlings increased compared to the control group by 91.44%, while the absorption of Cr by leaves decreased by 52.10%. These findings suggest that the LBA108 strain possesses bioremediation capabilities as a microbial-phytoremediation option for Cr-contaminated soil.


Assuntos
Biodegradação Ambiental , Cromo , Raphanus , Microbiologia do Solo , Poluentes do Solo , Raphanus/microbiologia , Poluentes do Solo/metabolismo , Cromo/metabolismo
3.
Toxics ; 11(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36977027

RESUMO

AIMS: To screen heavy metal-tolerant strains from heavy metal-contaminated soil in mining areas and determine the tolerance of the strains to different heavy metals and their removal rates through experiments. METHODS: Mercury-resistant strain LBA119 was isolated from mercury-contaminated soil samples in Luanchuan County, Henan Province, China. The strain was identified by Gram staining, physiological and biochemical tests, and 16S rDNA sequences. The LBA119 strain showed good resistance and removal rates to heavy metals such as Pb2+, Hg2+, Mn2+, Zn2+, and Cd2+ using tolerance tests under optimal growth conditions. The mercury-resistant strain LBA119 was applied to mercury-contaminated soil to determine the ability of the strain to remove mercury from the soil compared to mercury-contaminated soil without bacterial biomass. RESULTS: Mercury-resistant strain LBA119 is a Gram-positive bacterium that appears as a short rod under scanning electron microscopy, with a single bacterium measuring approximately 0.8 × 1.3 µm. The strain was identified as a Bacillus by Gram staining, physiological and biochemical tests, and 16S rDNA sequence analysis. The strain was highly resistant to mercury, with a minimum inhibitory concentration (MIC) of 32 mg/L for mercury. Under a 10 mg/L mercury environment, the optimal inoculation amount, pH, temperature, and salt concentration of the LBA119 strain were 2%, 7, 30 °C, and 20 g/L, respectively. In the 10 mg/L Hg2+ LB medium, the total removal rate, volatilization rate, and adsorption rate at 36 h were 97.32%, 89.08%, and 8.24%, respectively. According to tolerance tests, the strain showed good resistance to Pb2+, Mn2+, Zn2+, Cd2+, and other heavy metals. When the initial mercury concentration was 50 mg/L and 100 mg/L, compared with the mercury-contaminated soil that contained an LB medium without bacterial biomass, LBA119 inoculation increased 15.54-37.67% after 30 days of culture. CONCLUSION: This strain shows high bioremediation potential for mercury-contaminated soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA