Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37235469

RESUMO

Point cloud registration is a basic task in computer vision and computer graphics. Recently, deep learning-based end-to-end methods have made great progress in this field. One of the challenges of these methods is to deal with partial-to-partial registration tasks. In this work, we propose a novel end-to-end framework called MCLNet that makes full use of multi-level consistency for point cloud registration. First, the point-level consistency is exploited to prune points located outside overlapping regions. Second, we propose a multi-scale attention module to perform consistency learning at the correspondence-level for obtaining reliable correspondences. To further improve the accuracy of our method, we propose a novel scheme to estimate the transformation based on geometric consistency between correspondences. Compared to baseline methods, experimental results show that our method performs well on smaller-scale data, especially with exact matches. The reference time and memory footprint of our method are relatively balanced, which is more beneficial for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA