Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684806

RESUMO

Mechanical forces induced by high-speed oscillations provide an elegant way to dynamically alter the fundamental properties of materials such as refractive index, absorption coefficient and gain dynamics. Although the precise control of mechanical oscillation has been well developed in the past decades, the notion of dynamic mechanical forces has not been harnessed for developing tunable lasers. Here we demonstrate actively tunable mid-infrared laser action in group-IV nanomechanical oscillators with a compact form factor. A suspended GeSn cantilever nanobeam on a Si substrate is resonantly driven by radio-frequency waves. Electrically controlled mechanical oscillation induces elastic strain that periodically varies with time in the GeSn nanobeam, enabling actively tunable lasing emission at >2 µm wavelengths. By utilizing mechanical resonances in the radio frequency as a driving mechanism, this work presents wide-range mid-infrared tunable lasers with ultralow tuning power consumption.

2.
Opt Lett ; 49(5): 1281-1284, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426993

RESUMO

We report high-performance germanium-on-insulator (GeOI) waveguide photodetectors (WGPDs) for electronic-photonic integrated circuits (EPICs) operating at telecommunication wavelengths. The GeOI samples were fabricated using layer transfer and wafer-bonding techniques, and a high-quality Ge active layer was achieved. Planar lateral p-i-n WGPDs were fabricated and characterized, and they exhibited a low dark current of 0.1 µA. Strain-induced alterations in the optical properties were observed, resulting in an extended photodetection range up to λ = 1638 nm. This range encompasses crucial telecommunication bands. The WGPDs exhibited a high responsivity of 0.56 A/W and a high detectivity of D ∗ = 1.87 ×109cmHz1/2W - 1 at 1550 nm. A frequency-response analysis revealed that increasing the bias voltage from -1 to -9 V enhances the 3-dB bandwidth from 31 to 49 MHz. This study offers a comprehensive understanding of GeOI WGPDs, fostering high-performance EPICs with implications for telecommunications and beyond.

3.
Opt Express ; 31(17): 27543-27552, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710827

RESUMO

Single-mode tunable quantum cascade lasers (QCLs) are promising for high-resolution and highly sensitive trace gases sensing across the mid-infrared (MIR) region. We report on the development of a tunable single-mode slot waveguide QCL array in the long wavelength part of the MIR regime (>12 µm). This laser array exhibits a tuning range of around 12 cm-1, from 735.3 to 747.3 cm-1. Using this developed single-mode tunable QCL, we demonstrate individual gas sensing, yielding the detection limit of 940 ppb and 470 ppb for acetylene and o-xylene, respectively. To verify the potential of the developed QCL array in multi-species gas detection, laser absorption measurements of two mixed gases of acetylene and o-xylene were conducted, showing the absorption features of the corresponding gases agree well with the theoretical predictions.

4.
Opt Lett ; 48(16): 4269-4271, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582009

RESUMO

Quantum photonic circuits have recently attracted much attention owing to the potential to achieve exceptional performance improvements over conventional classical electronic circuits. Second-order χ(2) nonlinear processes play an important role in the realization of several key quantum photonic components. However, owing to their centrosymmetric nature, CMOS-compatible materials including silicon (Si) and germanium (Ge) traditionally do not possess the χ(2) response. Recently, second-harmonic generation (SHG) that requires the χ(2) response was reported in Ge, but no attempts at enhancing the SHG signal have been conducted and proven experimentally. Herein, we demonstrate the effect of strain on SHG from Ge by depositing a silicon nitride (Si3N4) stressor layer on Ge-on-insulator (GOI) microdisks. This approach allows the deformation of the centrosymmetric unit cell structure of Ge, which can further enhance the χ(2) nonlinear susceptibility for SHG emission. The experimental observation of SHG under femtosecond optical pumping indicates a clear trend of enhancement in SHG signals with increasing strain. Such improvements boost conversion efficiencies by 300% when compared to the control counterpart. This technique paves the way toward realizing a CMOS-compatible material with nonlinear characteristics, presenting unforeseen opportunities for its integration in the semiconductor industry.

5.
Opt Express ; 31(15): 23801-23812, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475222

RESUMO

Mixed pitch gratings are developed for the optical addressing of trapped 88Sr+ ion by means of simulation and experimental measurement approaches. Meanwhile, Python-based data analysis techniques were developed to analyze simulated and measured beam profiles. A fixed pitch grating with a pitch of 1.2 µm was used as a reference, and a mixed pitch grating with pitches of 1.1/1.2 µm of various ratios are investigated. The Python-based data analysis codes demonstrates highly automated capability in processing both simulated and measured beam profile data to compute key parameters, including beam waist and Gaussian fitting. Mixed pitch grating delivers light beam with smaller beam waist (17.4 µm) compared to the fixed pitch grating (26.4 µm), exhibiting ∼34% beam waist reduction.

6.
Adv Mater ; 35(41): e2304082, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37391190

RESUMO

Carbon nanotubes (CNTs) possess extremely anisotropic electronic, thermal, and optical properties owing to their 1D character. While their linear optical properties have been extensively studied, nonlinear optical processes, such as harmonic generation for frequency conversion, remain largely unexplored in CNTs, particularly in macroscopic CNT assemblies. In this work, macroscopic films of aligned and type-separated (semiconducting and metallic) CNTs are synthesized and polarization-dependent third-harmonic generation (THG) from the films with fundamental wavelengths ranging from 1.5 to 2.5 µm is studied. Both films exhibited strongly wavelength-dependent, intense THG signals, enhanced through exciton resonances, and third-order nonlinear optical susceptibilities of 2.50 × 10-19  m2  V-2 (semiconducting CNTs) and 1.23 × 10-19  m2  V-2 (metallic CNTs), respectively are found, for 1.8 µm excitation. Further, through systematic polarization-dependent THG measurements, the values of all elements of the susceptibility tensor are determined, verifying the macroscopically 1D nature of the films. Finally, polarized THG imaging is performed to demonstrate the nonlinear anisotropy in the large-size CNT film with good alignment. These findings promise applications of aligned CNT films in mid-infrared frequency conversion, nonlinear optical switching, polarized pulsed lasers, polarized long-wave detection, and high-performance anisotropic nonlinear photonic devices.

7.
Light Sci Appl ; 12(1): 145, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308488

RESUMO

One of the most exciting breakthroughs in physics is the concept of topology that was recently introduced to photonics, achieving robust functionalities, as manifested in the recently demonstrated topological lasers. However, so far almost all attention was focused on lasing from topological edge states. Bulk bands that reflect the topological bulk-edge correspondence have been largely missed. Here, we demonstrate an electrically pumped topological bulk quantum cascade laser (QCL) operating in the terahertz (THz) frequency range. In addition to the band-inversion induced in-plane reflection due to topological nontrivial cavity surrounded by a trivial domain, we further illustrate the band edges of such topological bulk lasers are recognized as the bound states in the continuum (BICs) due to their nonradiative characteristics and robust topological polarization charges in the momentum space. Therefore, the lasing modes show both in-plane and out-of-plane tight confinements in a compact laser cavity (lateral size ~3λlaser). Experimentally, we realize a miniaturized THz QCL that shows single-mode lasing with a side-mode suppression ratio (SMSR) around 20 dB. We also observe a cylindrical vector beam for the far-field emission, which is evidence for topological bulk BIC lasers. Our demonstration on miniaturization of single-mode beam-engineered THz lasers is promising for many applications including imaging, sensing, and communications.

8.
ACS Nano ; 17(13): 12151-12159, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37350358

RESUMO

High-detectivity and low-cost short-wave infrared photodetectors with complementary metal-oxide-semiconductor (CMOS) compatibility are attractive for various applications such as next-generation optical communication, LiDAR, and molecular sensing. Here, GeSn/Ge multiple-quantum-well (MQW) photodetectors with a dielectric nanohole array metasurface were proposed to realize high-detectivity and low-cost SWIR photodetection. The Ge nanohole array metasurface was utilized to enhance the light absorption in the GeSn/Ge MQW active layer. Compared with metallic nanostructures, the dielectric nanohole structure has the advantages of low intrinsic loss and CMOS compatibility. The introduction of metasurface architecture facilitates a 10.5 times enhanced responsivity of 0.232 A/W at 2 µm wavelength while slightly sacrificing the dark current density. Besides, the metasurface GeSn/Ge MQW photodetectors benefit 35% improvement in the 3 dB bandwidth compared to control GeSn/Ge MQW photodetectors, which can be attributed to the reduced RC delay. Due to the high responsivity and low dark current density, the room temperature specific detectivity at 2 µm is as high as 5.34 × 109 cm·Hz1/2/W, which is the highest among GeSn photodetectors and is better than commercial InSb and PbSe photodetectors operating at the similar wavelength. This work offers a promising approach for achieving low-cost and effective photodetection at 2 µm, contributing to the development of the 2 µm communication band.

9.
RSC Adv ; 13(17): 11324-11336, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37057269

RESUMO

Strain engineering is a versatile technique used to tune the electronic and optical attributes of a semiconductor. A proper degree of strain can induce the optimum amount of gain necessary for light-emitting applications. Particularly, photonic integrated chips require an efficient light-emitting material that can be easily assimilated into complementary metal-oxide semiconductor (CMOS) technology. Germanium falls in the same group of the periodic table as silicon, and thus, it completely complies with Si technology. Hence, we investigated extensively the electronic and optical properties of hexagonal germanium for both compressive and tensile strains using density functional theory. The electronic bandstructure, dielectric function, absorption, and reflectivity were calculated by employing a modified Becke-Johnson (mBJ) potential including spin-orbit coupling for uniaxial strains ±0.5-5%. We calculated the effective masses at various symmetry points and determined other band parameters, including the crystal field splitting and spin-orbit splitting energies. The partial, projected, and total density of states were discussed in great depth to unveil the characteristics of the energy states that take part in optical transitions. Finally, the optical gain for the semiconductor was calculated as a function of strain. After the band inversion phenomenon, hex-Ge generates a huge increase in the amplification and bandwidth of optical gain. This results from the increased electron concentration in Γ- 7c state and enhanced momentum matrix between the p-character valence states and sp-hybridized states of the conduction band. Conduction band to light hole recombination is observed to improve the light emission to a great extent.

10.
Adv Sci (Weinh) ; 10(17): e2207611, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37072675

RESUMO

The technology to develop a large number of identical coherent light sources on an integrated photonics platform holds the key to the realization of scalable optical and quantum photonic circuits. Herein, a scalable technique is presented to produce identical on-chip lasers by dynamically controlled strain engineering. By using localized laser annealing that can control the strain in the laser gain medium, the emission wavelengths of several GeSn one-dimensional photonic crystal nanobeam lasers are precisely matched whose initial emission wavelengths are significantly varied. The method changes the GeSn crystal structure in a region far away from the gain medium by inducing Sn segregation in a dynamically controllable manner, enabling the emission wavelength tuning of more than 10 nm without degrading the laser emission properties such as intensity and linewidth. The authors believe that the work presents a new possibility to scale up the number of identical light sources for the realization of large-scale photonic-integrated circuits.

11.
Opt Lett ; 48(3): 735-738, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723576

RESUMO

Despite having achieved drastically improved lasing characteristics by harnessing tensile strain, the current methods of introducing a sizable tensile strain into GeSn lasers require complex fabrication processes, thus reducing the viability of the lasers for practical applications. The geometric strain amplification is a simple technique that can concentrate residual and small tensile strain into localized and large tensile strain. However, the technique is not suitable for GeSn due to the intrinsic compressive strain introduced during the conventional epitaxial growth. In this Letter, we demonstrate the geometrical strain amplification in GeSn by employing a tensile strained GeSn-on-insulator (GeSnOI) substrate. This work offers exciting opportunities in developing practical wavelength-tunable lasers for realizing fully integrated photonic circuits.

12.
Nanoscale ; 15(10): 4843-4851, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36805597

RESUMO

Black-Si (b-Si) providing broadband light antireflection has become a versatile substrate for photodetectors, photo-electric catalysis, sensors, and photovoltaic devices. However, the conventional fabrication methods suffer from single morphology, low yield, or frangibility. In this work, we present a high-yield CMOS-compatible technique to produce 6-inch wafer-scale b-Si with diverse random nanostructures. b-Si is achieved by O2/SF6 plasma-based reactive ion etching (RIE) of the Si wafer which is coated with a GeSn layer. A stable grid of the SnOxFy layer, formed during the initial GeSn etching, acts as a self-assembled hard mask for the formation of subwavelength Si nanostructures. b-Si wafers with diverse surface morphologies, such as the nanopore, nanocone, nanohole, nanohillock, and nanowire were achieved. Furthermore, the responsivity of the b-Si metal-semiconductor-metal (MSM) photodetector in the near-infrared (NIR) wavelength range (1000-1200 nm) is 40-200% higher than that of a planar-Si MSM photodetector with the same level of dark current, which is beneficial for applications in photon detectors, solar cells, and photocatalysis. This work not only demonstrates a new non-lithography method to fabricate wafer-scale b-Si wafers, but may also provide a novel strategy to fabricate other nanostructured surface materials (e.g., Ge or III-V based compounds) with morphology engineering.

13.
ACS Nano ; 17(3): 2148-2158, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36706067

RESUMO

Nonlinear optical activities (e.g., harmonic generations) in two-dimensional (2D) layered materials have attracted much attention due to the great promise in diverse optoelectronic applications such as nonlinear optical modulators, nonreciprocal optical device, and nonlinear optical imaging. Exploration of nonlinear optical response (e.g., frequency conversion) in the infrared, especially the mid-infrared (MIR) region, is highly desirable for ultrafast MIR laser applications ranging from tunable MIR coherent sources, MIR supercontinuum generation, and MIR frequency-comb-based spectroscopy to high harmonic generation. However, nonlinear optical effects in 2D layered materials under MIR pump are rarely reported, mainly due to the lack of suitable 2D layered materials. Van der Waals layered platinum disulfide (PtS2) with a sizable bandgap from the visible to the infrared region is a promising candidate for realizing MIR nonlinear optical devices. In this work, we investigate the nonlinear optical properties including third-and fifth-harmonic generation (THG and FHG) in thin layered PtS2 under infrared pump (1550-2510 nm). Strikingly, the ultrastrong third-order nonlinear susceptibility χ(3)(-3ω;ω,ω,ω) of thin layered PtS2 in the MIR region was estimated to be over 10-18 m2/V2, which is about one order of that in traditional transition metal chalcogenides. Such excellent performance makes air-stable PtS2 a potential candidate for developing next-generation MIR nonlinear photonic devices.

14.
Nanoscale ; 14(19): 7341-7349, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35535767

RESUMO

Semiconductor nanomembranes (NMs) have emerged as an attractive nanomaterial for advanced electronic and photonic devices with attractive features such as transferability and flexibility, enabling heterogeneous integration of multi-functional components. Here, we demonstrate transferable single-layer GeSn NM resonant-cavity-enhanced photodetectors for 2 µm optical communication and multi-spectral short-wave infrared sensing/imaging applications. The single-layer strain-free GeSn NMs with an Sn concentration of 10% are released from a high-quality GeSn-on-insulator (GSOI) substrate with the defective interface regions removed. By transferring the GeSn NMs onto a predesigned distribution Bragg reflector (DBR)/Si substrate, a vertical microcavity is integrated into the device to enhance the light-matter interaction in the GeSn NM. With the integrated cavity and high-quality single-layer GeSn NM, a record responsivity of 0.51 A W-1 at 2 µm wavelength at room temperature is obtained, which is more than two orders of magnitude higher than the reported values of the multiple-layer GeSn membrane photodetectors without cavities. The potential of the device for multi-spectral photodetection is demonstrated by tuning the responsivity spectrum with different NM thicknesses. Theoretical simulations are utilized to analyze and verify the mechanisms of responsivity enhancement. The approach can be applied to other GeSn-NM-based active devices, such as electro-absorption modulators or light emitters, presenting a new pathway towards heterogeneous group-IV photonic integrated circuits with miniaturized devices.

15.
Opt Express ; 30(4): 4706-4717, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209446

RESUMO

Germanium (Ge) lateral p-i-n photodetectors with grating and hole-array structures were fabricated on a Ge-on-insulator (GOI) platform. Owing to the low threading dislocation density (TDD) in the transferred Ge layer, a low dark current of 0.279 µA was achieved at -1 V. The grating structure enhances the optical absorption by guiding the lateral propagation of normal incident light, contributing to a 3× improved responsivity at 1,550 nm. Compared with the grating structure, the hole-array structure not only guides the lateral modes but also benefits the vertical resonance modes. A 4.5× higher responsivity of 0.188 A/W at 1,550 nm was achieved on the 260 nm Ge absorptive layer. In addition, both the grating and the hole-array structure attribute to a 2× and a 1.6× enhanced 3dB bandwidth at -5 V due to significantly reduced capacitance. The planar configuration of p-i-n photodiodes is favorable for large-scale monolithic integration. The incorporated surface structures offer promising approaches to reinforce the responsivity and bandwidth simultaneously, paving the way for the development of high-performance Ge photodetectors on silicon substrate.

16.
Opt Lett ; 46(15): 3809-3812, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329287

RESUMO

Germanium-tin-on-insulator (GSOI) has emerged as a new platform for three-dimensional (3D) photonic-integrated circuits (PICs). We report, to our knowledge, the first demonstration of GeSn dual-waveband resonant-cavity-enhanced photodetectors (RCE PDs) on GSOI platforms with resonance-enhanced responsivity at both 2 µm and 1.55 µm bands. 10% Sn is introduced to the GeSn absorbing layer to extend the detection wavelength to the 2 µm band. A vertical Fabry-Perot cavity is designed to enhance the responsivity. The measured responsivity spectra show resonance peaks that cover a wide wavelength range near both the 2 µm and conventional telecommunication bands. This work demonstrates that GeSn dual-waveband RCE PDs on a GSOI platform are promising for CMOS-compatible 3D PICs for optoelectronic applications in 2 µm and telecommunication bands.

17.
Opt Express ; 29(11): 16520-16533, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154213

RESUMO

Gourd-shaped hole array germanium (Ge) vertical p-i-n photodiodes were designed and demonstrated on a germanium-on-insulator (GOI) substrate with the excellent responsivity of 0.74 A/W and specific detectivity of 3.1 × 1010 cm·Hz1/2/W. It is calculated that the gourd-shaped hole design provides a higher optical absorption compared to a cylinder-shaped hole design. As a result, the external quantum efficiency for the gourd-shaped hole array photodetector was enhanced by ∼2.5× at 1,550 nm, comparing with hole-free array photodetectors. In addition, the extracted specific detectivity is superior to that of commercial bulk Ge photodiodes. The 3-dB bandwidth for the hole array photodetectors is improved by ∼10% due to a lower device capacitance. This work paves the way for low-cost and high-performance CMOS compatible photodetectors for Si-based photonic-integrated circuits.

18.
Opt Express ; 29(10): 14174-14181, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985141

RESUMO

The creation of CMOS compatible light sources is an important step for the realization of electronic-photonic integrated circuits. An efficient CMOS-compatible light source is considered the final missing component towards achieving this goal. In this work, we present a novel crossbeam structure with an embedded optical cavity that allows both a relatively high and fairly uniform biaxial strain of ∼0.9% in addition to a high-quality factor of >4,000 simultaneously. The induced biaxial strain in the crossbeam structure can be conveniently tuned by varying geometrical factors that can be defined by conventional lithography. Comprehensive photoluminescence measurements and analyses confirmed that optical gain can be significantly improved via the combined effect of low temperature and high strain, which is supported by a three-fold reduction of the full width at half maximum of a cavity resonance at ∼1,940 nm. Our demonstration opens up the possibility of further improving the performance of germanium lasers by harnessing geometrically amplified biaxial strain.

19.
ACS Nano ; 15(5): 8386-8396, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33908251

RESUMO

Interdigitated photodetectors (IPDs) based on the two-dimensional electron gas (2DEG) at the AlGaN/GaN interface have gained prominence as high sensitivity ultraviolet (UV) PDs due to their excellent optoelectronic performance. However, most 2DEG-IPDs have been built on rigid substrates, thus limiting the use of 2DEG-IPDs in flexible and wearable applications. In this paper, we have demonstrated high performance flexible AlGaN/GaN 2DEG-IPDs using AlGaN/GaN 2DEG heterostructure membranes created from 8 in. AlGaN/GaN on insulator (AlGaN/GaNOI) substrates. The interdigitated AlGaN/GaN heterostructure has been engineered to reduce dark current by disconnecting the conductive channel at the heterostructure interface. Photocurrent has been also boosted by the escaped carriers from the 2DEG layer. Therefore, the utilization of a 2DEG layer in transferrable AlGaN/GaN heterostructure membranes offers great promises for high performance flexible 2DEG-IPDs for advanced UV detection systems that are critically important in myriad biomedical and environmental applications.

20.
Opt Express ; 29(6): 8498-8509, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820296

RESUMO

Au-hole array and Au-GeSn grating structures were designed and incorporated in GeSn metal-semiconductor-metal (MSM) photodetectors for enhanced photo detection at 2 µm. Both plasmonic structures are beneficial for effective optical confinement near the surface due to surface plasmon resonance (SPR), contributing to an enhanced responsivity. The responsivity enhancement for Au hole-array structure is insensitive to the polarization direction, while the enhancement for Au-GeSn grating structure depends on the polarization direction. The responsivity for GeSn photodetector with Au hole-array structure has ∼50% reinforcement compared with reference photodetector. On the other hand, Au-GeSn grating structure benefits a 3× enhanced responsivity of 0.455 A/W at 1.5V under TM-polarized illumination. The achieved responsivity is among the highest values for GeSn photodetectors operating at 2 µm. The plasmonic GeSn photodetectors in this work offer an alternative solution for high-efficiency photo detection, manifesting their great potentials as candidates for 2 µm optical communication and other emerging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA