Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 14(2): 240-257, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37916956

RESUMO

PIK3CA (PI3Kα) is a lipid kinase commonly mutated in cancer, including ∼40% of hormone receptor-positive breast cancer. The most frequently observed mutants occur in the kinase and helical domains. Orthosteric PI3Kα inhibitors suffer from poor selectivity leading to undesirable side effects, most prominently hyperglycemia due to inhibition of wild-type (WT) PI3Kα. Here, we used molecular dynamics simulations and cryo-electron microscopy to identify an allosteric network that provides an explanation for how mutations favor PI3Kα activation. A DNA-encoded library screen leveraging electron microscopy-optimized constructs, differential enrichment, and an orthosteric-blocking compound led to the identification of RLY-2608, a first-in-class allosteric mutant-selective inhibitor of PI3Kα. RLY-2608 inhibited tumor growth in PIK3CA-mutant xenograft models with minimal impact on insulin, a marker of dysregulated glucose homeostasis. RLY-2608 elicited objective tumor responses in two patients diagnosed with advanced hormone receptor-positive breast cancer with kinase or helical domain PIK3CA mutations, with no observed WT PI3Kα-related toxicities. SIGNIFICANCE: Treatments for PIK3CA-mutant cancers are limited by toxicities associated with the inhibition of WT PI3Kα. Molecular dynamics, cryo-electron microscopy, and DNA-encoded libraries were used to develop RLY-2608, a first-in-class inhibitor that demonstrates mutant selectivity in patients. This marks the advance of clinical mutant-selective inhibition that overcomes limitations of orthosteric PI3Kα inhibitors. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 227 . This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Neoplasias da Mama , Hiperinsulinismo , Humanos , Feminino , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Microscopia Crioeletrônica , Neoplasias da Mama/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/genética , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/genética , DNA
2.
Mol Cancer Ther ; 20(11): 2098-2109, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34433663

RESUMO

Macrophages can be co-opted to contribute to neoplastic, neurologic, and inflammatory diseases. Colony-stimulating factor 1 receptor (CSF1R)-dependent macrophages and other inflammatory cells can suppress the adaptive immune system in cancer and contribute to angiogenesis, tumor growth, and metastasis. CSF1R-expressing osteoclasts mediate bone degradation in osteolytic cancers and cancers that metastasize to bone. In the rare disease tenosynovial giant cell tumor (TGCT), aberrant CSF1 expression and production driven by a gene translocation leads to the recruitment and growth of tumors formed by CSF1R-dependent inflammatory cells. Small molecules and antibodies targeting the CSF1/CSF1R axis have shown promise in the treatment of TGCT and cancer, with pexidartinib recently receiving FDA approval for treatment of TGCT. Many small-molecule kinase inhibitors of CSF1R also inhibit the closely related kinases KIT, PDGFRA, PDGFRB, and FLT3, thus CSF1R suppression may be limited by off-target activity and associated adverse events. Vimseltinib (DCC-3014) is an oral, switch control tyrosine kinase inhibitor specifically designed to selectively and potently inhibit CSF1R by exploiting unique features of the switch control region that regulates kinase conformational activation. In preclinical studies, vimseltinib durably suppressed CSF1R activity in vitro and in vivo, depleted macrophages and other CSF1R-dependent cells, and resulted in inhibition of tumor growth and bone degradation in mouse cancer models. Translationally, in a phase I clinical study, vimseltinib treatment led to modulation of biomarkers of CSF1R inhibition and reduction in tumor burden in TGCT patients.


Assuntos
Tumor de Células Gigantes de Bainha Tendinosa/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Animais , Proliferação de Células , Estudos Cross-Over , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Adulto Jovem
3.
Sci Rep ; 9(1): 16832, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728045

RESUMO

Therapeutically targeting receptor tyrosine kinases has proven to be paramount to overcoming chemotherapy resistance in several cancer indications, improving patient outcomes. Insulin-Like Growth Factor Receptor 1 (IGF-1R) and Epidermal Growth Factor Receptor 3 (ErbB3) have been implicated as two such drivers of resistance, however their simultaneous role in ovarian cancer chemotherapy resistance remains poorly elucidated. The aim of this work is to determine the effects of dual IGF-1R/ErbB3 inhibition on ovarian cancer cell signaling, growth, and in vivo efficacy. Assessment of in vitro chemotherapy response across a panel of ovarian cancer cell lines revealed that increased IGF-1R cell surface expression correlates with decreased sensitivity to chemotherapy, and that growth induced by IGF-1R and ErbB3 ligands is blocked by the tetravalent bispecific antibody targeting IGF-1R and ErbB3, istiratumab. In vitro chemotherapy treatment increased ovarian cancer cell line capacity to activate prosurvival PI3K signaling in response to ligand, which could be prevented with istiratumab treatment. Furthermore, in vivo efficacy of standard of care chemotherapies using a xenograft model of ovarian cancer was potentiated with istiratumab. Our results suggest a role for IGF-1R and ErbB3 in driving chemotherapy resistance of ovarian cancer.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Receptor ErbB-3/metabolismo , Receptor IGF Tipo 1/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias Ovarianas/metabolismo , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacologia , Receptor ErbB-3/antagonistas & inibidores , Receptor IGF Tipo 1/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Cancer Res ; 24(12): 2873-2885, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29549161

RESUMO

Purpose: Insulin-like growth factor receptor 1 (IGF-1R) is critically involved in pancreatic cancer pathophysiology, promoting cancer cell survival and therapeutic resistance. Assessment of IGF-1R inhibitors in combination with standard-of-care chemotherapy, however, failed to demonstrate significant clinical benefit. The aim of this work is to unravel mechanisms of resistance to IGF-1R inhibition in pancreatic cancer and develop novel strategies to improve the activity of standard-of-care therapies.Experimental Design: Growth factor screening in pancreatic cancer cell lines was performed to identify activators of prosurvival PI3K/AKT signaling. The prevalence of activating growth factors and their receptors was assessed in pancreatic cancer patient samples. Effects of a bispecific IGF-1R and ErbB3 targeting antibody on receptor expression, signaling, cancer cell viability and apoptosis, spheroid growth, and in vivo chemotherapy activity in pancreatic cancer xenograft models were determined.Results: Growth factor screening in pancreatic cancer cells revealed insulin-like growth factor 1 (IGF-1) and heregulin (HRG) as the most potent AKT activators. Both growth factors reduced pancreatic cancer cell sensitivity to gemcitabine or paclitaxel in spheroid growth assays. Istiratumab (MM-141), a novel bispecific antibody that blocks IGF-1R and ErbB3, restored the activity of paclitaxel and gemcitabine in the presence of IGF-1 and HRG in vitro Dual IGF-1R/ErbB3 blocking enhanced chemosensitivity through inhibition of AKT phosphorylation and promotion of IGF-1R and ErbB3 degradation. Addition of istiratumab to gemcitabine and nab-paclitaxel improved chemotherapy activity in vivoConclusions: Our findings suggest a critical role for the HRG/ErbB3 axis and support the clinical exploration of dual IGF-1R/ErbB3 blocking in pancreatic cancer. Clin Cancer Res; 24(12); 2873-85. ©2018 AACR.


Assuntos
Albuminas/farmacologia , Desoxicitidina/análogos & derivados , Paclitaxel/farmacologia , Neoplasias Pancreáticas/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptores de Somatomedina/antagonistas & inibidores , Animais , Caspases/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Receptor ErbB-3/metabolismo , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
5.
Mol Cancer Ther ; 14(7): 1625-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25911688

RESUMO

Although EGFR is a validated therapeutic target across multiple cancer indications, the often modest clinical responses to current anti-EGFR agents suggest the need for improved therapeutics. Here, we demonstrate that signal amplification driven by high-affinity EGFR ligands limits the capacity of monoclonal anti-EGFR antibodies to block pathway signaling and cell proliferation and that these ligands are commonly coexpressed with low-affinity EGFR ligands in epithelial tumors. To develop an improved antibody therapeutic capable of overcoming high-affinity ligand-mediated signal amplification, we used a network biology approach comprised of signaling studies and computational modeling of receptor-antagonist interactions. Model simulations suggested that an oligoclonal antibody combination may overcome signal amplification within the EGFR:ERK pathway driven by all EGFR ligands. Based on this, we designed MM-151, a combination of three fully human IgG1 monoclonal antibodies that can simultaneously engage distinct, nonoverlapping epitopes on EGFR with subnanomolar affinities. In signaling studies, MM-151 antagonized high-affinity EGFR ligands more effectively than cetuximab, leading to an approximately 65-fold greater decrease in signal amplification to ERK. In cell viability studies, MM-151 demonstrated antiproliferative activity against high-affinity EGFR ligands, either singly or in combination, while cetuximab activity was largely abrogated under these conditions. We confirmed this finding both in vitro and in vivo in a cell line model of autocrine high-affinity ligand expression. Together, these preclinical studies provide rationale for the clinical study of MM-151 and suggest that high-affinity EGFR ligand expression may be a predictive response marker that distinguishes MM-151 from other anti-EGFR therapeutics.


Assuntos
Anticorpos Monoclonais/farmacologia , Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epitopos/imunologia , Epitopos/metabolismo , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Feminino , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos SCID , Microscopia Confocal , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/metabolismo
6.
J Invest Dermatol ; 126(12): 2583-95, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16810298

RESUMO

Androgen exposure stimulates the growth of beard hair follicles. The follicle dermal papilla appears to be the site of androgen action; however, the molecular mechanisms that regulate this process are not well understood. In an attempt to identify genes that contribute to the androgen-responsive phenotype, we compared gene expression patterns in unstimulated and androgen-treated cultured human dermal papilla cells isolated from beard (androgen-sensitive) and occipital scalp (androgen-insensitive) hair follicles. Through this analysis, we identified three genes that are expressed at significantly higher levels in beard dermal papilla cells. One of these genes, sfrp-2 has been identified as a dermal papilla signature gene in mouse pelage follicles. Two of these genes, mn1 and atp1beta1, have not been studied in the hair follicle. A fourth, fibulin-1d, was slightly upregulated in beard dermal papilla cells. The differences in the expression of these genes in cultured beard and scalp dermal papilla cells reflected similar differences in microdissected dermal papilla isolated from intact beard and scalp follicles. Our findings introduce potentially novel signaling pathways in dermal papilla cells. In addition, this study supports that cultured dermal papilla cells provide a cell-based model system that is reflective of the biology of in vivo hair follicle cells.


Assuntos
Biomarcadores/metabolismo , Face , Folículo Piloso/metabolismo , Couro Cabeludo , Adulto , Androgênios/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Adesão Celular , Proliferação de Células , Células Cultivadas , Células Epidérmicas , Expressão Gênica , Perfilação da Expressão Gênica , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/fisiologia , Humanos , Queratinócitos/citologia , Masculino , Proteínas de Membrana/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA