Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Talanta ; 274: 125916, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547835

RESUMO

In this report, a facile and label-free electrochemical RNA biosensor is developed by exploiting methylene blue (MB) as an electroactive positive ligand of G-quadruplex. The electrochemical response mechanism of the nucleic acid assay was based on the change in differential pulse voltammetry (DPV) signal of adsorbed MB on the immobilized human telomeric G-quadruplex DNA with a loop that is complementary to the target RNA. Hybridization between synthetic positive control RNA and G-quadruplex DNA probe on the transducer platform rendered a conformational change of G-quadruplex to double-stranded DNA (dsDNA), and increased the redox current of cationic MB π planar ligand at the sensing interface, thereby the electrochemical signal of the MB-adsorbed duplex is proportional to the concentration of target RNA, with SARS-CoV-2 (COVID-19) RNA as the model. Under optimal conditions, the target RNA can be detected in a linear range from 1 zM to 1 µM with a limit of detection (LOD) obtained at 0.59 zM for synthetic target RNA and as low as 1.4 copy number for positive control plasmid. This genosensor exhibited high selectivity towards SARS-CoV-2 RNA over other RNA nucleotides, such as SARS-CoV and MERS-CoV. The electrochemical RNA biosensor showed DPV signal, which was proportional to the 2019-nCoV_N_positive control plasmid from 2 to 200000 copies (R2 = 0.978). A good correlation between the genosensor and qRT-PCR gold standard was attained for the detection of SARS-CoV-2 RNA in terms of viral copy number in clinical samples from upper respiratory specimens.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Quadruplex G , Limite de Detecção , RNA Viral , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Técnicas Biossensoriais/métodos , RNA Viral/genética , RNA Viral/análise , Técnicas Eletroquímicas/métodos , COVID-19/diagnóstico , COVID-19/virologia , Telômero/química , Telômero/genética , Azul de Metileno/química , Hibridização de Ácido Nucleico , DNA/química , DNA/genética , Estudo de Prova de Conceito
2.
Synth Syst Biotechnol ; 8(3): 527-535, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37637201

RESUMO

Methylobacterium species, the representative bacteria distributed in phyllosphere region of plants, often synthesize carotenoids to resist harmful UV radiations. Methylobacterium extorquens is known to produce a carotenoid pigment and recent research revealed that this carotenoid has a C30 backbone. However, its exact structure remains unknown. In the present study, the carotenoid produced by M. extorquens AM1 was isolated and its structure was determined as 4-[2-O-11Z-octadecenoyl-ß-glucopyranosyl]-4,4'-diapolycopenedioc acid (1), a glycosylated C30 carotenoid. Furthermore, the genes related to the C30 carotenoid synthesis were investigated. Squalene, the precursor of the C30 carotenoid, is synthesized by the co-occurrence of META1p1815, META1p1816 and META1p1817. Further overexpression of the genes related to squalene synthesis improved the titer of carotenoid 1. By using gene deletion and gene complementation experiments, the glycosyltransferase META1p3663 and acyltransferase META1p3664 were firstly confirmed to catalyze the tailoring steps from 4,4'-diapolycopene-4,4'-dioic acid to carotenoid 1. In conclusion, the structure and biosynthetic genes of carotenoid 1 produced by M. extorquens AM1 were firstly characterized in this work, which shed lights on engineering M. extorquens AM1 for producing carotenoid 1 in high yield.

3.
Biosensors (Basel) ; 13(6)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37366981

RESUMO

In view of the presence of pathogenic Vibrio cholerae (V. cholerae) bacteria in environmental waters, including drinking water, which may pose a potential health risk to humans, an ultrasensitive electrochemical DNA biosensor for rapid detection of V. cholerae DNA in the environmental sample was developed. Silica nanospheres were functionalized with 3-aminopropyltriethoxysilane (APTS) for effective immobilization of the capture probe, and gold nanoparticles were used for acceleration of electron transfer to the electrode surface. The aminated capture probe was immobilized onto the Si-Au nanocomposite-modified carbon screen printed electrode (Si-Au-SPE) via an imine covalent bond with glutaraldehyde (GA), which served as the bifunctional cross-linking agent. The targeted DNA sequence of V. cholerae was monitored via a sandwich DNA hybridization strategy with a pair of DNA probes, which included the capture probe and reporter probe that flanked the complementary DNA (cDNA), and evaluated by differential pulse voltammetry (DPV) in the presence of an anthraquninone redox label. Under optimum sandwich hybridization conditions, the voltammetric genosensor could detect the targeted V. cholerae gene from 1.0 × 10-17-1.0 × 10-7 M cDNA with a limit of detection (LOD) of 1.25 × 10-18 M (i.e., 1.1513 × 10-13 µg/µL) and long-term stability of the DNA biosensor up to 55 days. The electrochemical DNA biosensor was capable of giving a reproducible DPV signal with a relative standard deviation (RSD) of <5.0% (n = 5). Satisfactory recoveries of V. cholerae cDNA concentration from different bacterial strains, river water, and cabbage samples were obtained between 96.5% and 101.6% with the proposed DNA sandwich biosensing procedure. The V. cholerae DNA concentrations determined by the sandwich-type electrochemical genosensor in the environmental samples were correlated to the number of bacterial colonies obtained from standard microbiological procedures (bacterial colony count reference method).


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Verduras , DNA Complementar , Ouro/química , Nanopartículas Metálicas/química , DNA , Limite de Detecção , Água , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
4.
Foods ; 12(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37107493

RESUMO

An impedimetric aptasensor based on a polyaniline (PAni) support matrix is developed through the surface modification of a screen-printed carbon electrode (SPE) for aflatoxin B1 (AFB1) detection in foodstuffs and feedstuffs for food safety. The PAni is synthesized with the chemical oxidation method and characterized with potentiostat/galvanostat, FTIR, and UV-vis spectroscopy techniques. The stepwise fabrication procedure of the PAni-based aptasensor is characterized by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods. The impedimetric aptasensor is optimized using the EIS technique, and its feasibility of detecting AFB1 in real sample matrices is evaluated via a recovery study in spiked foodstuffs and feedstuffs, such as pistachio nuts, cinnamons, cloves, corn, and soybeans, with a good recovery percentage, ranging from 87.9% to 94.7%. The charge transfer resistance (RCT) at the aptasensor interface increases linearly with the AFB1 concentration in the range of 3 × 10-2 nM to 8 × 10-2 nM, with a regression coefficient (R2) value of 0.9991 and detection limit of 0.01 nM. The proposed aptasensor is highly selective towards AFB1 and partially selective to AFB2 and ochratoxin A (OTA) due to their similar structures that differ only at the carbon-carbon double bond located at C8 and C9 and the large molecule size of OTA.

5.
Environ Sci Pollut Res Int ; 30(11): 28422-28445, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680719

RESUMO

The current study aims to provide a roadmap for future research by analyzing the research structures and trends in scholarly publications related to the status of zinc in public health. Only journal articles published between 1978 and 2022 are included in the refined bibliographical outputs retrieved from the Web of Science (WoS) database. The first section announces findings based on WoS categories, such as discipline heterogeneity, times cited and publications over time, and citation reports. The second section then employs VoSViewer software for bibliometric analysis, which includes a thorough examination of co-authorship among researchers, organizations, and countries and a count of all bibliographic databases among documents. The final section discusses the research's weaknesses and strengths in zinc status, public health, and potential future directions; 7158 authors contributed to 1730 papers (including 339 with publications, more than three times). "Keen, C.L." is a researcher with the most publications and a better understanding of zinc status in public health. Meanwhile, the USA has been the epicenter of research on the status of zinc in public health due to the highest percentage of publications with the most citations and collaboration with the rest of the world, with the top institution being the University of California, Davis. Future research can be organized collaboratively based on hot topics from co-occurrence network mapping and bibliographic couplings to improve zinc status and protect public health.


Assuntos
Saúde Pública , Zinco , Bibliometria , Bases de Dados Bibliográficas , Bases de Dados Factuais
6.
Biosensors (Basel) ; 12(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36005045

RESUMO

A new electrochemical DNA biosensor based on mercaptopropionic acid (MPA)-capped ZnS quantum dots (MPA-ZnS QDs) immobilization matrix for covalent binding with 20-base aminated oligonucleotide has been successfully developed. Prior to the modification, screen-printed carbon paste electrode (SPE) was self-assembled with multilayer gold nanoparticles (AuNPs) and cysteamine (Cys). The inclusion of MPA-ZnS QDs semiconducting material in modified electrodes has enhanced the electron transfer between the SPE transducer and DNA leading to improved bioanalytical assay of target biomolecules. Electrochemical studies performed by cyclic voltammetry (CV) and differential pulsed voltammetry (DPV) demonstrated that the MPA-ZnS QDs modified AuNPs electrode was able to produce a lower charge transfer resistance response and hence higher electrical current response. Under optimal conditions, the immobilized synthetic DNA probe exhibited high selectivity towards synthetic target DNA. Based on the DPV response of the reduction of anthraquinone monosulphonic acid (AQMS) redox probe, the MPA-ZnS QDs-based electrochemical DNA biosensor responded to target DNA concentration from 1 × 10-9 µM to 1 × 10-3 µM with a sensitivity 1.2884 ± 0.12 µA, linear correlation coefficient (R2) of 0.9848 and limit of detection (LOD) of 1 × 10-11 µM target DNA. The DNA biosensor exhibited satisfactory reproducibility with an average relative standard deviation (RSD) of 7.4%. The proposed electrochemical transducer substrate has been employed to immobilize the aminated Arowana fish (Scleropages formosus) DNA probe. The DNA biosensor showed linearity to target DNA from 1 × 10-11 to 1 × 10-6 µM (R2 = 0.9785) with sensitivity 1.1251 ± 0.243 µA and LOD of 1 × 10-11 µM. The biosensor has been successfully used to determine the gender of Arowana fish without incorporating toxic raw materials previously employed in the hazardous processing conditions of polypyrrole chemical conducting polymer, whereby the cleaning step becomes difficult with thicker films due to high levels of toxic residues from the decrease in polymerization efficacy as films grew.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Pontos Quânticos , Animais , DNA/química , Sondas de DNA , Técnicas Eletroquímicas , Eletrodos , Ouro/química , Nanopartículas Metálicas/química , Polímeros , Pirróis , Pontos Quânticos/química , Reprodutibilidade dos Testes , Sulfetos , Compostos de Zinco
7.
Biosensors (Basel) ; 12(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35735536

RESUMO

A microbial optosensor for nitrite was constructed based on biomimetic silica nanoparticles, which were doped with R5, a polypeptide component of silaffin, as a robust biosilica immobilization matrix entrapped with Raoultella planticola and NAD(P)H cofactor during the in vitro biosilicification process of silica nanoparticles. Ruthenium(II)(bipy)2(phenanthroline-benzoylthiourea), the chromophoric pH probe, was physically adsorbed on the resulting biogenic nanosilica. Optical quantitation of the nitrite concentration was performed via reflectance transduction of the bio-doped microbial nanosilica at a maximum reflectance of 608 nm, due to the deprotonation of phen-BT ligands in the ruthenium complex, while the intracellular enzyme expression system catalyzed the enzymatic reduction of nitrite. Reflectance enhancement of the microbial optosensor was linearly proportional to the nitrite concentration from 1−100 mg L−1, with a 0.25 mg L−1 limit of detection and a rapid response time of 4 min. The proposed microbial optosensor showed good stability of >2 weeks, great repeatability for 5 repetitive assays (relative standard deviation, (RSD) = 0.2−1.4%), high reproducibility (RSD = 2.5%), and a negligible response to common interferents found in processed meats, such as NO3−, NH4+, K+, Ca2+, and Mg2+ ions, was observed. The microbial biosensor demonstrated an excellent capacity to provide an accurate estimation of nitrite in several cured meat samples via validation using a standard UV-vis spectrophotometric Griess assay.


Assuntos
Nitritos , Rutênio , Materiais Biocompatíveis , Carne , Reprodutibilidade dos Testes , Dióxido de Silício
8.
Sensors (Basel) ; 22(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35590834

RESUMO

In the last decade, there has been a steady stream of information on the methods and techniques available for detecting harmful algae species. The conventional approaches to identify harmful algal bloom (HAB), such as microscopy and molecular biological methods are mainly laboratory-based and require long assay times, skilled manpower, and pre-enrichment of samples involving various pre-experimental preparations. As an alternative, biosensors with a simple and rapid detection strategy could be an improvement over conventional methods for the detection of toxic algae species. Moreover, recent biosensors that involve the use of nanomaterials to detect HAB are showing further enhanced detection limits with a broader linear range. The improvement is attributed to nanomaterials' high surface area to volume ratio, excellent biological compatibility with biomolecules, and being capable of amplifying the electrochemical signal. Hence, this review presents the potential usage of biosensors over conventional methods to detect HABs. The methods reported for the detection of harmful algae species, ranging from conventional detection methods to current biosensor approaches will be discussed, along with their respective advantages and drawbacks to indicate the future prospects of biosensor technology for HAB event management.


Assuntos
Técnicas Biossensoriais , Microalgas , Técnicas Biossensoriais/métodos , Proliferação Nociva de Algas
9.
J Nurs Adm ; 52(3): 160-166, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170578

RESUMO

OBJECTIVES: The aim of this study was to depict a comprehensive description of near miss research and clarify research gaps. BACKGROUND: Learning from near miss can provide early warnings and is critical for proactive and prospective risk management. Because of the lack of structured reviews, there is little knowledge about how near miss management has been managed in the past. METHODS: This review was conducted following the Arksey and O'Malley's methodology and reported by the PRISMA Extension for Scoping Reviews. RESULTS: Sixty-seven research articles were included. The results revealed that the most investigated fields include near miss reporting, near miss characteristics, and good catch project. Poor theoretical investigation, underreporting, and inconsistent outcome indicators are major problems. CONCLUSIONS: Solely understanding causes of near misses cannot guarantee effective learning; we also need to apply appropriate learning theories. Advanced technologies should be applied to solve long-standing underreporting issues. Accurate and consistent indicators should be applied in near miss research and management.


Assuntos
Atenção à Saúde , Near Miss , Pesquisa sobre Serviços de Saúde/métodos , Humanos
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120535, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34749257

RESUMO

Optical biosensor for the detection of formaldehyde has been developed based on the transparent enzymatic stacked membranes system on the glass substrate, and employing optical absorption transducer with H+ ion-selective Nile Blue chromoionophore (NBCM) dye-doped methacrylic acrylic (MB28) copolymer membrane as the optode membrane. Alcohol oxidase (AOx) enzymes were entrapped within the biocompatible sol-gel matrix and deposited on top of the pH optode membrane. As the uppermost catalytic membrane catalyzes the oxidative conversion of formaldehyde to formic acid and hydrogen peroxide, the immobilized NBCM undergoes protonation reaction and forms HNBCM+, the dark blue ion-chromoionophore complex via H+ ion transfer reaction within the soft and flexible MB28 polymeric membrane. This rendered the enzymatic optode membrane absorbed a high yellow light intensity from the light source and exhibited maximum absorption peaks at 610 and 660 nm. Optical evaluation of formaldehyde by means on UV-vis absorption transduction of the enzymatic stacked membranes demonstrated rapid response time of 10 min with high sensitivity, good linearity and high reproducibility across a wide formaldehyde concentration range of 1 × 10-3-1 × 103 mM (R2 = 0.9913), and limit of detection (LOD) at 1 × 10-3 mM, which could be useful for formaldehyde assay in industrial, agricultural, environmental, food and beverages as well as medical samples. The formaldehyde concentration in snapper fish, pomfret fish and threadfin fish samples determined by the proposed optical enzymatic biosensor were very much close to the formaldehyde concentration values determined by the UV-vis spectrophotometric NASH standard method based on the statistical t-test. This suggests that the optical biosensor can be used as a reliable method for quantitative determination of formaldehyde levels in food samples.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas , Oxirredutases do Álcool , Animais , Formaldeído , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes
11.
Int J Biol Macromol ; 199: 1-9, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34922999

RESUMO

Dengue virus (DENV) is a positive-sense single-stranded RNA virus and that the detection of viral RNA itself is highly desirable, which can be achieved by using RNA biosensor diagnostic method. Herein, acrylic micropolymer-based optical RNA biosensor was developed by binding anionic copper(II) phthalocyanine (CPC) planar aromatic ligand to the G-quadruplex DNA probe via end-stacking with π-system of the guanine (G) quartet, and a blue coloration was developed on the G-quadruplex microspheres. Hybridization of G-quadruplex DNA probe with target DENV serotype 2 (DENV2) RNA unfolded the G-quadruplex, and rendering release of the CPC planar optical label, causing discoloration of the G-quadruplex microbiosensor. Optical characterization of the RNA biosensor was performed by means of fiber optic reflectance spectrophotometer at maximum reflectance wavelength of 774 nm. The reflectance response enhancement of the RNA-responsive G-quadruplex-based reflectometric biosensor was linearly proportional to the target oligo DENV2 RNA concentration in the range of 2 zM-2 µM, with a 0.447 zM limit of detection and a rapid response time of 30 min. Heightening in the reflectance signal based on structural transition of G-quadruplex in response to target RNA was successfully implemented in real-time DENV2 detection in non-invasive human fluid samples (i.e. saliva and urine) under informed consent.


Assuntos
Arbovírus , Técnicas Biossensoriais , Dengue , Quadruplex G , Técnicas Biossensoriais/métodos , Dengue/diagnóstico , Humanos , Microesferas , RNA , Sorogrupo
12.
Nurse Educ Pract ; 56: 103185, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34509748

RESUMO

AIM: To translate the Strategic Learning Assessment Map into Chinese and validate it in Chinese nursing organisations. BACKGROUND: Nursing is the largest occupational organisation in the health sector and its adaptation and innovation are important for the realisation of sustainable development goals. Organisational learning is critical in cultivating the adaptive and innovative abilities of organisations, but there is limited research on its measurement. Although the Strategic Learning Assessment Map is a widely acknowledged organisational measurement instrument, it has not yet been adapted and validated in China. DESIGN: A cross-sectional study design was used. METHODS: The Chinese version of the Strategic Learning Assessment Map was generated through forward-backward translation and was tested with a convenience sample of 2745 nurses from 7 administrative regions of mainland China. The internal consistency, content validity, structural validity and theoretical framework were examined. RESULTS: Results validated the theoretical framework and showed excellent content validity, convergent validity and fitness of the measurement model; only discriminant validity was not satisfactory. Cronbach's α values for the overall scale and its subscales ranged from 0.97 to 0.99. CONCLUSIONS: The Chinese version of the Strategic Learning Assessment Map is a reliable organisational learning instrument for Chinese nursing organisations.


Assuntos
Comparação Transcultural , China , Estudos Transversais , Humanos , Psicometria , Reprodutibilidade dos Testes , Inquéritos e Questionários
13.
Sensors (Basel) ; 21(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34372350

RESUMO

The emergence of highly pathogenic and deadly human coronaviruses, namely SARS-CoV and MERS-CoV within the past two decades and currently SARS-CoV-2, have resulted in millions of human death across the world. In addition, other human viral diseases, such as mosquito borne-viral diseases and blood-borne viruses, also contribute to a higher risk of death in severe cases. To date, there is no specific drug or medicine available to cure these human viral diseases. Therefore, the early and rapid detection without compromising the test accuracy is required in order to provide a suitable treatment for the containment of the diseases. Recently, nanomaterials-based biosensors have attracted enormous interest due to their biological activities and unique sensing properties, which enable the detection of analytes such as nucleic acid (DNA or RNA), aptamers, and proteins in clinical samples. In addition, the advances of nanotechnologies also enable the development of miniaturized detection systems for point-of-care (POC) biosensors, which could be a new strategy for detecting human viral diseases. The detection of virus-specific genes by using single-stranded DNA (ssDNA) probes has become a particular interest due to their higher sensitivity and specificity compared to immunological methods based on antibody or antigen for early diagnosis of viral infection. Hence, this review has been developed to provide an overview of the current development of nanoparticles-based biosensors that target pathogenic RNA viruses, toward a robust and effective detection strategy of the existing or newly emerging human viral diseases such as SARS-CoV-2. This review emphasizes the nanoparticles-based biosensors developed using noble metals such as gold (Au) and silver (Ag) by virtue of their powerful characteristics as a signal amplifier or enhancer in the detection of nucleic acid. In addition, this review provides a broad knowledge with respect to several analytical methods involved in the development of nanoparticles-based biosensors for the detection of viral nucleic acid using both optical and electrochemical techniques.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Animais , Ouro , Humanos , SARS-CoV-2 , Prata
14.
Foods ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206168

RESUMO

The presence of mycotoxins in foodstuffs and feedstuffs is a serious concern for human health. The detection of mycotoxins is therefore necessary as a preventive action to avoid the harmful contamination of foodstuffs and animal feed. In comparison with the considerable expense of treating contaminated foodstuffs, early detection is a cost-effective way to ensure food safety. The high affinity of bio-recognition molecules to mycotoxins has led to the development of affinity columns for sample pre-treatment and the development of biosensors for the quantitative analysis of mycotoxins. Aptamers are a very attractive class of biological receptors that are currently in great demand for the development of new biosensors. In this review, the improvement in the materials and methodology, and the working principles and performance of both conventional and recently developed methods are discussed. The key features and applications of the fundamental recognition elements, such as antibodies and aptamers are addressed. Recent advances in aptasensors that are based on different electrochemical (EC) transducers are reviewed in detail, especially from the perspective of the diagnostic mechanism; in addition, a brief introduction of some commercially available mycotoxin detection kits is provided.

15.
Sensors (Basel) ; 21(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466407

RESUMO

Mass-spectrometry-based and X-ray fluorescence-based techniques have allowed the study of the distribution of Zn2+ ions at extracellular and intracellular levels over the past few years. However, there are some issues during purification steps, sample preparation, suitability for quantification, and the instruments' availability. Therefore, work on fluorescent sensors based on 8-aminoquinoline as tools to detect Zn2+ ions in environmental and biological applications has been popular. Introducing various carboxamide groups into an 8-aminoquinoline molecule to create 8-amidoquinoline derivatives to improve water solubility and cell membrane permeability is also a recent trend. This review aims to present a general overview of the fluorophore 8-aminoquinoline and its derivatives as Zn2+ receptors for zinc sensor probes. Various fluorescent chemosensor designs based on 8-amidoquinoline and their effectiveness and potential as a recognition probe for zinc analysis were discussed. Based on this review, it can be concluded that derivatives of 8-amidoquinoline have vast potential as functional receptors for zinc ions primarily because of their fast reactivity, good selectivity, and bio-compatibility, especially for biological applications. To better understand the Zn2+ ion fluorophores' function, diversity of the coordination complex and geometries need further studies. This review provides information in elucidating, designing, and exploring new 8-amidoquinoline derivatives for future studies for the improvement of chemosensors that are selective and sensitive to Zn2+.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119129, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33281086

RESUMO

Histamine is one of the important biomarkers for food spoilage in the food sectors. In the present study, a rapid and simple analytical tool has been developed to detect histamine as an indirect strategy to monitor food freshness level. Optical histamine sensor with carboxyl-substituted Schiff base zinc(II) complex with hydroxypropoxy side chain deposited onto titanium dioxide nanoparticles was fabricated and was found to respond successfully to histamine. The Schiff base zinc(II) complex-histamine binding generated an enhancement of the fluorescent signal. Under the optimal reaction condition, the developed sensor can detect down to 2.53 × 10-10 M in the range of between 1.0 × 10-9 and 1.0 × 10-5 M (R2 = 0.9868). Selectivity performance of the sensor towards histamine over other amines was confirmed. The sensor also displayed good reproducibility performances with low relative standard deviation values (1.45%-4.95%). Shelf-life studies suggested that the developed sensor remains stable after 60 days in histamine detection. More importantly, the proposed sensor has been successfully applied to determine histamine in salmon fillet with good recoveries. This strategy has a promising potential in the food quality assurance sectors, especially in controlling the food safety for healthy consumption among consumers.


Assuntos
Bases de Schiff , Titânio , Histamina , Reprodutibilidade dos Testes
17.
Sensors (Basel) ; 20(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899886

RESUMO

Carrageenans are linear sulphated polysaccharides that are commonly added into confectionery products but may exert a detrimental effect to human health. A new and simpler way of carrageenan determination based on an optical sensor utilizing a methylcellulose/poly(n-butyl acrylate) (Mc/PnBA) composite membrane with immobilized methylene blue (MB) was developed. The hydrophilic Mc polymer membrane was successfully modified with a more hydrophobic acrylic polymer. This was to produce an insoluble membrane at room temperature where MB reagent could be immobilized to build an optical sensor for carrageenan analysis. The fluorescence intensity of MB in the composite membrane was found to be proportional to the carrageenan concentrations in a linear manner (1.0-20.0 mg L-1, R2 = 0.992) and with a detection limit at 0.4 mg L-1. Recovery of spiked carrageenan into commercial fruit juice products showed percentage recoveries between 90% and 102%. The optical sensor has the advantages of improved sensitivity and better selectivity to carrageenan when compared to other types of hydrocolloids. Its sensitivity was comparable to most sophisticated techniques for carageenan analysis but better than other types of optical sensors. Thus, this sensor provides a simple, rapid, and sensitive means for carageenan analysis.

18.
Nanotechnology ; 31(48): 485501, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-32748805

RESUMO

Graphene decorated with graphitic nanospheres functionalized with pyrene butyric acid (PBA) is used for the first time to fabricate a DNA biosensor. The electrode was formed by attaching a DNA probe onto PBA, which had been stacked onto a graphene material decorated with graphene nanospheres (GNSs). The nanomaterial was drop-coated onto a carbon screen-printed electrode (SPE) to create the GNS-PBA modified electrode (GNS-PBA/SPE). A simple method was used to produce GNS by annealing graphene oxide (GO) solution at high temperature. Field emission scanning electron micrographs confirmed the presence of a spherical shape of GNS with a diameter range of 40-80 nm. A stable and uniform PBA-modified GNS (GNS-PBA) was obtained with a facile ultrasonication step. Thus allowing aminated DNA probes of genetically modified (GM) soybean to be attached to the nanomaterials to form the DNA biosensor. The GNS-PBA/SPE exhibited excellent electrical conductivity via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) tests using potassium ferricyanide (K3[Fe(CN)6]) as the electroactive probe. By employing an anthraquinone monosulfonic acid (AQMS) redox intercalator as the DNA hybridization indicator, the biosensor response was evaluated using the DPV electrochemical method. A good linear relationship between AQMS oxidation peak current and target DNA concentrations from 1.0 × 10-16 to 1.0 × 10-8 M with a limit of detection (LOD) of less than 1.0 × 10-16 M was obtained. Selectivity experiments revealed that the voltammetric GM DNA biosensor could discriminate complementary sequences of GM soybean from non-complementary sequences and hence good recoveries were obtained for real GM soybean sample analysis. The main advantage of using GNS is an improvement of the DNA biosensor analytical performance.


Assuntos
Técnicas Biossensoriais/métodos , Sondas de DNA/química , DNA/análise , Grafite/química , Nanosferas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Pirenos/química
19.
Sensors (Basel) ; 20(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218202

RESUMO

A DNA micro-optode for dengue virus detection was developed based on the sandwich hybridization strategy of DNAs on succinimide-functionalized poly(n-butyl acrylate) (poly(nBA-NAS)) microspheres. Gold nanoparticles (AuNPs) with an average diameter of ~20 nm were synthesized using a centrifugation-based method and adsorbed on the submicrometer-sized polyelectrolyte-coated poly(styrene-co-acrylic acid) (PSA) latex particles via an electrostatic method. The AuNP-latex spheres were attached to the thiolated reporter probe (rDNA) by Au-thiol binding to functionalize as an optical gold-latex-rDNA label. The one-step sandwich hybridization recognition involved a pair of a DNA probe, i.e., capture probe (pDNA), and AuNP-PSA reporter label that flanked the target DNA (complementary DNA (cDNA)). The concentration of dengue virus cDNA was optically transduced by immobilized AuNP-PSA-rDNA conjugates as the DNA micro-optode exhibited a violet hue upon the DNA sandwich hybridization reaction, which could be monitored by a fiber-optic reflectance spectrophotometer at 637 nm. The optical genosensor showed a linear reflectance response over a wide cDNA concentration range from 1.0 × 10-21 M to 1.0 × 10-12 M cDNA (R2 = 0.9807) with a limit of detection (LOD) of 1 × 10-29 M. The DNA biosensor was reusable for three consecutive applications after regeneration with mild sodium hydroxide. The sandwich-type optical biosensor was well validated with a molecular reverse transcription polymerase chain reaction (RT-PCR) technique for screening of dengue virus in clinical samples, e.g., serum, urine, and saliva from dengue virus-infected patients under informed consent.


Assuntos
Técnicas Biossensoriais , DNA Viral/isolamento & purificação , Vírus da Dengue/isolamento & purificação , Dengue/diagnóstico , Acrilatos/química , DNA Viral/química , Dengue/virologia , Vírus da Dengue/patogenicidade , Ouro/química , Humanos , Nanopartículas Metálicas/química , Microesferas , Polímeros/química , Succinimidas/química
20.
Sensors (Basel) ; 20(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111092

RESUMO

A novel label-free electrochemical DNA biosensor was constructed for the determination of Escherichia coli bacteria in environmental water samples. The aminated DNA probe was immobilized onto hollow silica microspheres (HSMs) functionalized with 3-aminopropyltriethoxysilane and deposited onto a screen-printed electrode (SPE) carbon paste with supported gold nanoparticles (AuNPs). The biosensor was optimized for higher specificity and sensitivity. The label-free E. coli DNA biosensor exhibited a dynamic linear response range of 1 × 10-10 µM to 1 × 10-5 µM (R2 = 0.982), with a limit of detection at 1.95 × 10-15 µM, without a redox mediator. The sensitivity of the developed DNA biosensor was comparable to the non-complementary and single-base mismatched DNA. The DNA biosensor demonstrated a stable response up to 21 days of storage at 4 ℃ and pH 7. The DNA biosensor response was regenerable over three successive regeneration and rehybridization cycles.


Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , Escherichia coli/isolamento & purificação , Microesferas , Dióxido de Silício/química , Soluções Tampão , Eletroquímica , Eletrodos , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA