Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Foods ; 12(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37444223

RESUMO

A new next-generation probiotic, Christensenella minuta was first discovered in 2012 from healthy human stool and described under the phylum Firmicutes. C. minuta is a subdominant commensal bacterium with highly heritable properties that exhibits mutual interactions with other heritable microbiomes, and its relative abundance is positively correlated with the lean host phenotype associated with a low BMI index. It has been the subject of numerous studies, owing to its potential health benefits. This article reviews the evidence from various studies of C. minuta interventions using animal models for managing metabolic diseases, such as obesity, inflammatory bowel disease, and type 2 diabetes, characterized by gut microbiota dysbiosis and disruption of host metabolism. Notably, more studies have presented the complex interaction between C. minuta and host metabolism when it comes to metabolic health. Therefore, C. minuta could be a potential candidate for innovative microbiome-based biotherapy via fecal microbiota transplantation or oral administration. However, the detailed underlying mechanism of action requires further investigation.

2.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902078

RESUMO

Matrix metalloproteinase-12 (MMP12), or macrophage metalloelastase, plays important roles in extracellular matrix (ECM) component degradation. Recent reports show MMP12 has been implicated in the pathogenesis of periodontal diseases. To date, this review represents the latest comprehensive overview of MMP12 in various oral diseases, such as periodontitis, temporomandibular joint dysfunction (TMD), orthodontic tooth movement (OTM), and oral squamous cell carcinoma (OSCC). Furthermore, the current knowledge regarding the distribution of MMP12 in different tissues is also illustrated in this review. Studies have implicated the association of MMP12 expression with the pathogenesis of several representative oral diseases, including periodontitis, TMD, OSCC, OTM, and bone remodelling. Although there may be a potential role of MMP12 in oral diseases, the exact pathophysiological role of MMP12 remains to be elucidated. Understanding the cellular and molecular biology of MMP12 is essential, as MMP12 could be a potential target for developing therapeutic strategies targeting inflammatory and immunologically related oral diseases.


Assuntos
Metaloproteinase 12 da Matriz , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/enzimologia , Metaloproteinase 12 da Matriz/metabolismo , Neoplasias Bucais/enzimologia , Periodontite/patologia
3.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293339

RESUMO

The increasing prevalence of resistance in carbapenems is an escalating concern as carbapenems are reserved as last-line antibiotics. Although indiscriminate antibiotic usage is considered the primary cause for resistance development, increasing evidence revealed that inconsequential strains without any direct clinical relevance to carbapenem usage are harboring carbapenemase genes. This phenomenon indirectly implies that environmental microbial populations could be the 'hidden vectors' propelling carbapenem resistance. This work aims to explore the carbapenem-resistance profile of Vibrio species across diverse settings. This review then proceeds to identify the different factors contributing to the dissemination of the resistance traits and defines the transmission pathways of carbapenem resistance. Deciphering the mechanisms for carbapenem resistance acquisition could help design better prevention strategies to curb the progression of antimicrobial resistance development. To better understand this vast reservoir selecting for carbapenem resistance in non-clinical settings, Vibrio species is also prospected as one of the potential indicator strains for carbapenem resistance in the environment.


Assuntos
Vibrio , beta-Lactamases , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Vibrio/genética , Vibrio/metabolismo , Testes de Sensibilidade Microbiana
4.
Nutrients ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079814

RESUMO

Early-life gut microbiota plays a role in determining the health and risk of developing diseases in later life. Various perinatal factors have been shown to contribute to the development and establishment of infant gut microbiota. One of the important factors influencing the infant gut microbial colonization and composition is the mode of infant feeding. While infant formula milk has been designed to resemble human milk as much as possible, the gut microbiome of infants who receive formula milk differs from that of infants who are fed human milk. A diverse microbial population in human milk and the microbes seed the infant gut microbiome. Human milk contains nutritional components that promote infant growth and bioactive components, such as human milk oligosaccharides, lactoferrin, and immunoglobulins, which contribute to immunological development. In an attempt to encourage the formation of a healthy gut microbiome comparable to that of a breastfed infant, manufacturers often supplement infant formula with prebiotics or probiotics, which are known to have a bifidogenic effect and can modulate the immune system. This review aims to elucidate the roles of human milk and formula milk on infants' gut and health.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Aleitamento Materno , Feminino , Humanos , Lactente , Fórmulas Infantis , Prebióticos
5.
Nutrients ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36079829

RESUMO

The ketogenic diet (KD) has been important in treating epilepsy since the 1920s. The benefits of KD further expanded to other neurological diseases, including Alzheimer's diseases, autism spectrum disorder, and nutritional disorder (obesity). Although the therapeutic efficacy of KD has been generally accepted, there is limited knowledge about its underlying mechanism of action, particularly its effect on our gut microbiome. Gut dysbiosis has been proposed to be involved in those diseases, and KD can promote gut microbiota remodeling that may assist in recovery. This review explores the therapeutic applications of KD, the roles of the gut microbiome in neurological diseases and obesity, as well as the effect of KD on the gut microbiome. The present information suggests that KD has significant roles in altering the gut microbiome to improve disease symptoms, mainly by incrementing Bacteroidetes to Firmicutes (B/F) ratio and reducing Proteobacteria in certain cases. However, current gaps call for continued research to understand better the gut microbiota profile altered by KD.


Assuntos
Transtorno do Espectro Autista , Dieta Cetogênica , Epilepsia , Microbioma Gastrointestinal , Distúrbios Nutricionais , Humanos , Obesidade
6.
Biomedicines ; 10(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35625774

RESUMO

Evidence has shown that gut microbiome plays a role in modulating the development of diseases beyond the gastrointestinal tract, including skin disorders such as psoriasis. The gut-skin axis refers to the bidirectional relationship between the gut microbiome and skin health. This is regulated through several mechanisms such as inflammatory mediators and the immune system. Dysregulation of microbiota has been seen in numerous inflammatory skin conditions such as atopic dermatitis, rosacea, and psoriasis. Understanding how gut microbiome are involved in regulating skin health may lead to development of novel therapies for these skin disorders through microbiome modulation, in particularly psoriasis. In this review, we will compare the microbiota between psoriasis patients and healthy control, explain the concept of gut-skin axis and the effects of gut dysbiosis on skin physiology. We will also review the current evidence on modulating gut microbiome using probiotics in psoriasis.

7.
Nutrients ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458209

RESUMO

The human gut microbiota is vital for maintaining human health in terms of immune system homeostasis. Perturbations in the composition and function of microbiota have been associated with several autoimmune disorders, including myasthenia gravis (MG), a neuromuscular condition associated with varying weakness and rapid fatigue of the skeletal muscles triggered by the host's antibodies against the acetylcholine receptor (AChR) in the postsynaptic muscle membrane at the neuromuscular junction (NMJ). It is hypothesized that perturbation of the gut microbiota is associated with the pathogenesis of MG. The gut microbiota community profiles are usually generated using 16S rRNA gene sequencing. Compared to healthy individuals, MG participants had an altered gut microbiota's relative abundance of bacterial taxa, particularly with a drop in Clostridium. The microbial diversity related to MG severity and the overall fecal short-chain fatty acids (SCFAs) were lower in MG subjects. Changes were also found in terms of serum biomarkers and fecal metabolites. A link was found between the bacterial Operational Taxonomic Unit (OTU), some metabolite biomarkers, and MG's clinical symptoms. There were also variations in microbial and metabolic markers, which, in combination, could be used as an MG diagnostic tool, and interventions via fecal microbiota transplant (FMT) could affect MG development. Probiotics may influence MG by restoring the gut microbiome imbalance, aiding the prevention of MG, and lowering the risk of gut inflammation by normalizing serum biomarkers. Hence, this review will discuss how alterations of gut microbiome composition and function relate to MG and the benefits of gut modulation.


Assuntos
Microbioma Gastrointestinal , Miastenia Gravis , Bactérias/genética , Biomarcadores , Transplante de Microbiota Fecal , Fezes/microbiologia , Humanos , RNA Ribossômico 16S/genética
8.
Biology (Basel) ; 11(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35053059

RESUMO

There is growing evidence of studies associating COVID-19 survivors with increased mental health consequences. Mental health implications related to a COVID-19 infection include both acute and long-term consequences. Here we discuss COVID-19-associated psychiatric sequelae, particularly anxiety, depression, and post-traumatic stress disorder (PTSD), drawing parallels to past coronavirus outbreaks. A literature search was completed across three databases, using keywords to search for relevant articles. The cause may directly correlate to the infection through both direct and indirect mechanisms, but the underlying etiology appears more complex and multifactorial, involving environmental, psychological, and biological factors. Although most risk factors and prevalence rates vary across various studies, being of the female gender and having a history of psychiatric disorders seem consistent. Several studies will be presented, demonstrating COVID-19 survivors presenting higher rates of mental health consequences than the general population. The possible mechanisms by which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the brain, affecting the central nervous system (CNS) and causing these psychiatric sequelae, will be discussed, particularly concerning the SARS-CoV-2 entry via the angiotensin-converting enzyme 2 (ACE-2) receptors and the implications of the immune inflammatory signaling on neuropsychiatric disorders. Some possible therapeutic options will also be considered.

9.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502269

RESUMO

Biofilms formed by methicillin-resistant S. aureus (MRSA) are among the most frequent causes of biomedical device-related infection, which are difficult to treat and are often persistent and recurrent. Thus, new and effective antibiofilm agents are urgently needed. In this article, we review the most relevant literature of the recent years reporting on promising anti-MRSA biofilm agents derived from the genus Streptomyces bacteria, and discuss the potential contribution of these newly reported antibiofilm compounds to the current strategies in preventing biofilm formation and eradicating pre-existing biofilms of the clinically important pathogen MRSA. Many efforts are evidenced to address biofilm-related infections, and some novel strategies have been developed and demonstrated encouraging results in preclinical studies. Nevertheless, more in vivo studies with appropriate biofilm models and well-designed multicenter clinical trials are needed to assess the prospects of these strategies.


Assuntos
Biofilmes/efeitos dos fármacos , Equipamentos e Provisões/efeitos adversos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Streptomyces/química , Streptomyces/metabolismo , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Equipamentos e Provisões/microbiologia , Humanos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Streptomyces/isolamento & purificação
10.
Antibiotics (Basel) ; 10(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201133

RESUMO

Actinobacteria constitute prolific sources of novel and vital bioactive metabolites for pharmaceutical utilization. In recent years, research has focused on exploring actinobacteria that thrive in extreme conditions to unearth their beneficial bioactive compounds for natural product drug discovery. Natural products have a significant role in resolving public health issues such as antibiotic resistance and cancer. The breakthrough of new technologies has overcome the difficulties in sampling and culturing extremophiles, leading to the outpouring of more studies on actinobacteria from extreme environments. This review focuses on the diversity and bioactive potentials/medically relevant biomolecules of extremophilic actinobacteria found from various unique and extreme niches. Actinobacteria possess an excellent capability to produce various enzymes and secondary metabolites to combat harsh conditions. In particular, a few strains have displayed substantial antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), shedding light on the development of MRSA-sensitive antibiotics. Several strains exhibited other prominent bioactivities such as antifungal, anti-HIV, anticancer, and anti-inflammation. By providing an overview of the recently found extremophilic actinobacteria and their important metabolites, we hope to enhance the understanding of their potential for the medical world.

11.
Antibiotics (Basel) ; 10(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203908

RESUMO

Bacterial vaginosis (BV) has been reported in one-third of women worldwide at different life stages, due to the complex balance in the ecology of the vaginal microbiota. It is a common cause of abnormal vaginal discharge and is associated with other health issues. Since the first description of anaerobic microbes associated with BV like Gardnerella vaginalis in the 1950s, researchers have stepped up the game by incorporating advanced molecular tools to monitor and evaluate the extent of dysbiosis within the vaginal microbiome, particularly on how specific microbial population changes compared to a healthy state. Moreover, treatment failure and BV recurrence rate remain high despite the standard antibiotic treatment. Consequently, researchers have been probing into alternative or adjunct treatments, including probiotics or even vaginal microbiota transplants, to ensure successful treatment outcomes and reduce the colonization by pathogenic microbes of the female reproductive tract. The current review summarizes the latest findings in probiotics use for BV and explores the potential of vaginal microbiota transplants in restoring vaginal health.

12.
Antibiotics (Basel) ; 10(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068272

RESUMO

Since the 1950s, antibiotics have been used in the field of animal husbandry for growth promotion, therapy and disease prophylaxis. It is estimated that up to 80% of the antibiotics produced by the pharmaceutical industries are used in food production. Most of the antibiotics are used as feed additives at sub-therapeutic levels to promote growth. However, studies show the indiscriminate use of antibiotics has led to the emergence of multidrug-resistant pathogens that threaten both animal health and human health, including vancomycin-resistant Enterococcus (VRE), Methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriaceae (CRE). This scenario is further complicated by the slow progress in achieving scientific breakthroughs in uncovering novel antibiotics following the 1960s. Most of the pharmaceutical industries have long diverted research funds away from the field of antibiotic discovery to more lucrative areas of drug development. If this situation is allowed to continue, humans will return to the pre-antibiotics era and potentially succumb to huge health and economic consequences. Fortunately, studies investigating various alternatives to antibiotics use in livestock show promising results. These alternatives include the application of bacteriophages and phage derived peptidoglycan degrading enzymes, engineered peptides, egg yolk antibodies, probiotics, prebiotics and synbiotics, as well as quorum quenching molecules. Therefore, this review aims to discuss the use of growth-promoting antibiotics and their impact on livestock and provide insights on the alternative approaches for animal husbandry.

13.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071337

RESUMO

Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.


Assuntos
Antibacterianos/química , Arecaceae/química , Celulose/química , Nanocompostos/química , Nanofibras/química , Óxido de Zinco/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Microscopia Eletrônica , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Tamanho da Partícula , Borracha/química , Salmonella/efeitos dos fármacos , Salmonella/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
14.
Microorganisms ; 9(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804162

RESUMO

People around the world ushered in the new year 2021 with a fear of COVID-19, as family members have lost their loved ones to the disease. Millions of people have been infected, and the livelihood of many has been jeopardized due to the pandemic. Pharmaceutical companies are racing against time to develop an effective vaccine to protect against COVID-19. Researchers have developed various types of candidate vaccines with the release of the genetic sequence of the SARS-CoV-2 virus in January. These include inactivated viral vaccines, protein subunit vaccines, mRNA vaccines, and recombinant viral vector vaccines. To date, several vaccines have been authorized for emergency use and they have been administered in countries across the globe. Meanwhile, there are also vaccine candidates in Phase III clinical trials awaiting results and approval from authorities. These candidates have shown positive results in the previous stages of the trials, whereby they could induce an immune response with minimal side effects in the participants. This review aims to discuss the different vaccine platforms and the clinical trials of the candidate vaccines.

15.
Molecules ; 25(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212836

RESUMO

Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals. This suggested the importance of the prompt detection, effective treatment, and prevention strategies. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites. Streptomycetes from mangrove environments attract researchers' attention due to their ability to synthesize diverse, interesting bioactive metabolites. The present review highlights research on mangrove-derived streptomycetes and the production of anticancer-related compounds from these microorganisms. Research studies conducted between 2008 and 2019, specifically mentioning the isolation of streptomycetes from mangrove areas and described the successful purification of compound(s) or generation of crude extracts with cytotoxic activity against human cancer cell lines, were compiled in this review. It is anticipated that there will be an increase in prospects for mangrove-derived streptomycetes as one of the natural resources for the isolation of chemotherapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Rhizophoraceae/microbiologia , Streptomyces/química , Animais , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Misturas Complexas , Humanos
16.
Oxid Med Cell Longev ; 2020: 1904178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32855763

RESUMO

Retinal pigment epithelial (RPE) cells are an essential part of the human eye because they not only mediate and control the transfer of fluids and solutes but also protect the retina against photooxidative damage and renew photoreceptor cells through phagocytosis. However, their function necessitates cumulative exposure to the sun resulting in UV damage, which may lead to the development of age-related macular degeneration (AMD). Several studies have shown that UVB induces direct DNA damage and oxidative stress in RPE cells by increasing ROS and dysregulating endogenous antioxidants. Activation of different signaling pathways connected to inflammation, cell cycle arrest, and intrinsic apoptosis was reported as well. Besides that, essential functions like phagocytosis, osmoregulation, and water permeability of RPE cells were also affected. Although the melanin within RPE cells can act as a photoprotectant, this photoprotection decreases with age. Nevertheless, the changes in lens epithelium-derived growth factor (LEDGF) and autophagic activity or application of bioactive compounds from natural products can reverse the detrimental effect of UVB. Additionally, in vivo studies on the whole retina demonstrated that UVB irradiation induces gene and protein level dysregulation, indicating cellular stress and aberrations in the chromosome level. Morphological changes like retinal depigmentation and drusen formation were noted as well which is similar to the etiology of AMD, suggesting the connection of UVB damage with AMD. Therefore, future studies, which include mechanism studies via in vitro or in vivo and other potential bioactive compounds, should be pursued for a better understanding of the involvement of UVB in AMD.


Assuntos
Células Epiteliais/efeitos da radiação , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/efeitos da radiação , Raios Ultravioleta , Apoptose/efeitos da radiação , Células Epiteliais/patologia , Humanos , Inflamassomos/metabolismo , Epitélio Pigmentado da Retina/patologia
17.
Molecules ; 25(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756432

RESUMO

There is an urgent need to search for new antibiotics to counter the growing number of antibiotic-resistant bacterial strains, one of which is methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report a Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia which was identified using 16S rRNA phylogenetic and phenotypic analysis. The methanolic extract of strain MUSC 125 showed anti-MRSA, anti-biofilm and antioxidant activities. Strain MUSC 125 was further screened for the presence of secondary metabolite biosynthetic genes. Our results indicated that both polyketide synthase (pks) gene clusters, pksI and pksII, were detected in strain MUSC 125 by PCR amplification. In addition, gas chromatography-mass spectroscopy (GC-MS) detected the presence of different chemicals in the methanolic extract. Based on the GC-MS analysis, eight known compounds were detected suggesting their contribution towards the anti-MRSA and anti-biofilm activities observed. Overall, the study bolsters the potential of strain MUSC 125 as a promising source of anti-MRSA and antibiofilm compounds and warrants further investigation.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/química , Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Microbiologia do Solo , Streptomyces/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Proteínas de Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Malásia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Testes de Sensibilidade Microbiana , Família Multigênica , Fenótipo , Filogenia , Policetídeo Sintases/genética , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Streptomyces/classificação , Streptomyces/isolamento & purificação
18.
Cancers (Basel) ; 12(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823729

RESUMO

Colorectal cancer (CRC) is a global public health issue which poses a substantial humanistic and economic burden on patients, healthcare systems and society. In recent years, intestinal dysbiosis has been suggested to be involved in the pathogenesis of CRC, with specific pathogens exhibiting oncogenic potentials such as Fusobacterium nucleatum, Escherichia coli and enterotoxigenic Bacteroides fragilis having been found to contribute to CRC development. More recently, it has been shown that initiation of CRC development by these microorganisms requires the formation of biofilms. Gut microbial biofilm forms in the inner colonic mucus layer and is composed of polymicrobial communities. Biofilm results in the redistribution of colonic epithelial cell E-cadherin, increases permeability of the gut and causes a loss of function of the intestinal barrier, all of which enhance intestinal dysbiosis. This literature review aims to compile the various strategies that target these pathogenic biofilms and could potentially play a role in the prevention of CRC. We explore the potential use of natural products, silver nanoparticles, upconverting nanoparticles, thiosalicylate complexes, anti-rheumatic agent (Auranofin), probiotics and quorum-sensing inhibitors as strategies to hinder colon carcinogenesis via targeting colon-associated biofilms.

19.
Front Pharmacol ; 11: 366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372949

RESUMO

Angelicin, a member of the furocoumarin group, is related to psoralen which is well known for its effectiveness in phototherapy. The furocoumarins as a group have been studied since the 1950s but only recently has angelicin begun to come into its own as the subject of several biological studies. Angelicin has demonstrated anti-cancer properties against multiple cell lines, exerting effects via both the intrinsic and extrinsic apoptotic pathways, and also demonstrated an ability to inhibit tubulin polymerization to a higher degree than psoralen. Besides that, angelicin too demonstrated anti-inflammatory activity in inflammatory-related respiratory and neurodegenerative ailments via the activation of NF-κB pathway. Angelicin also showed pro-osteogenesis and pro-chondrogenic effects on osteoblasts and pre-chondrocytes respectively. The elevated expression of pro-osteogenic and chondrogenic markers and activation of TGF-ß/BMP, Wnt/ß-catenin pathway confirms the positive effect of angelicin bone remodeling. Angelicin also increased the expression of estrogen receptor alpha (ERα) in osteogenesis. Other bioactivities, such as anti-viral and erythroid differentiating properties of angelicin, were also reported by several researchers with the latter even displaying an even greater aptitude as compared to the commonly prescribed drug, hydroxyurea, which is currently on the market. Apart from that, recently, a new application for angelicin against periodontitis had been studied, where reduction of bone loss was indirectly caused by its anti-microbial properties. All in all, angelicin appears to be a promising compound for further studies especially on its mechanism and application in therapies for a multitude of common and debilitating ailments such as sickle cell anaemia, osteoporosis, cancer, and neurodegeneration. Future research on the drug delivery of angelicin in cancer, inflammation and erythroid differentiation models would aid in improving the bioproperties of angelicin and efficacy of delivery to the targeted site. More in-depth studies of angelicin on bone remodeling, the pro-osteogenic effect of angelicin in various bone disease models and the anti-viral implications of angelicin in periodontitis should be researched. Finally, studies on the binding of angelicin toward regulatory genes, transcription factors, and receptors can be done through experimental research supplemented with molecular docking and molecular dynamics simulation.

20.
Biomed Res Int ; 2020: 6402607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258133

RESUMO

The mangrove ecosystem of Malaysia remains yet to be fully explored for potential microbes that produce biologically active metabolites. In the present study, a mangrove-derived Streptomyces sp. strain MUSC 14 previously isolated from the state of Pahang, Malaysia Peninsula, was studied for its potential in producing antioxidant metabolites. The identity of Streptomyces sp. strain MUSC14 was consistent with the genotypic and phenotypic characteristics of the Streptomyces genus. The antioxidant potential of Streptomyces sp. strain MUSC 14 was determined through screening of its methanolic extract against sets of antioxidant assays. The results were indicative of Streptomyces sp. strain MUSC 14 displaying strong antioxidant activity against ABTS, DPPH free radicals and metal chelating activity of 62.71 ± 3.30%, 24.71 ± 2.22%, and 55.82 ± 2.35%, respectively. The result of ferric reducing activity measured in terms of dose was equivalent to 2.35-2.45 µg of positive control ascorbic acid. Furthermore, there was a high correlation between the total phenolic content and the antioxidant activities with r = 0.979, r = 0.858, and r = 0.983 representing ABTS, DPPH, and metal chelation, respectively. Overall, the present study suggests that Streptomyces sp. strain MUSC 14 from mangrove forest soil has potential to produce antioxidant metabolites that can be further exploited for therapeutic application.


Assuntos
Antioxidantes/análise , Microbiologia do Solo , Streptomyces , Áreas Alagadas , Malásia , Streptomyces/química , Streptomyces/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA