Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Neurosci ; 17(1): 56, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27514646

RESUMO

BACKGROUND: Recurrent convulsions can cause irreversible astrocyte death, impede neuron regeneration, and further aggravate brain damage. MicroRNAs have been revealed as players in the progression of numerous diseases including cancer and Alzheimer's disease. Particularly, microRNA has been found linked to seizure-induced neuronal death. In this study, a rat model of recurrent convulsions induced by flurothyl treatments was utilised to assess the alterations of microRNA expressions in hippocampus tissues. We also applied an in vitro model in which primary astrocytes were exposed to kainic acid to verify the targets of miR-34b-5p identified in the animal model. RESULTS: We discovered that miR-34b-5p, a member of the miR-34 family, increased significantly in flurothyl-treated rat hippocampus tissue. More surprisingly, this upregulation occurred concurrently with accumulating astrocyte apoptosis, indicating the involvement of miR-34b-5p in seizures caused astrocyte apoptosis. Results from the in vitro experiments further demonstrated that miR-34b-5p directly targeted Bcl-2 mRNA, translationally repressed Bcl-2 protein, and thus modulated cell apoptosis by influencing Bcl-2, Bax, and Caspase-3. CONCLUSION: Our findings prove microRNAs play a role in mediating recurrent convulsions-induced astrocyte death and further indicate that miR-34b-5p could acts as a regulator for astrocyte apoptosis induced by recurrent seizures.


Assuntos
Apoptose/fisiologia , Astrócitos/metabolismo , Hipocampo/metabolismo , MicroRNAs/metabolismo , Convulsões/metabolismo , Animais , Astrócitos/patologia , Western Blotting , Caspase 3/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Flurotila , Hipocampo/patologia , Marcação In Situ das Extremidades Cortadas , Ácido Caínico , Análise em Microsséries , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Convulsões/patologia , Transcriptoma , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA