Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(42): e2402482, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38855997

RESUMO

Hydrogel as a solar evaporator shows great potential in freshwater production. However, hydrogels often lead to an imbalance between solar energy input and water supply management due to their excessively high saturated water content. Thus, achieving a stable water-energy-balance in hydrogel evaporators remains challenging. Here, by tortuosity engineering designed water transport channels, a seamless high-tortuosity/low-tortuosity/high-tortuosity structured hydrogel (SHLH structure hydrogel) evaporator is developed, which enables the hydrogel with customized water transport rate, leading to the controlled water supply at the evaporator interface. An excellent equilibrium between the photothermal conversion and water supply is established, and the maximum utilization of solar energy is realized, thereby achieving an excellent evaporation rate of 3.64 kg m-2 h-1 under one solar illumination. This tortuosity engineering controlled SHLH structured evaporator provides a novel strategy to attain water-energy-balance and expands new approaches for constructing hydrogel-based evaporators with tailored water transportation capacity.

2.
Adv Mater ; 36(18): e2309507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38273713

RESUMO

Maintaining a match between input solar energy and required energy by water supply management is key to achieving efficient interfacial solar-driven evaporation (ISDE). In practice, the solar radiation flux is constantly changing throughout the day, so keeping a dynamic water-energy-balance of ISDE is a big challenge. Herein, a photothermal water diode (WD) evaporator concept is proposed by an integrated hydrophilic/hydrophobic Janus absorber to overcome the issue. Due to the unique unidirectional water transport properties induced by asymmetric wettability, a self-adaptive balance between photothermal energy input and water uptake is established, thus realizing the energy matching and utilization maximization. The experimental and simulation results exhibit that with the increase of sunlight intensity, the water supply speed is significantly accelerated due to the dynamic management and self-regulation on water replenishment. Therefore, an excellent evaporation rate of up to 2.14 kg m-2 h-1 with a high efficiency of 93.7% under 1 sun illumination is achieved. This water diode engineering with Janus wettability provides a novel strategy and extends the path for designing solar evaporation systems with diverse water supply properties, which shows great potential in different environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA