RESUMO
Bacterial aromatic polyketides are compounds with multiple aromatic rings synthesized by bacterial type II polyketide synthases (PKSs), some of which have been developed into clinical drugs. Compounds containing aromatic polyketides synthesized by hybrid type I and type II PKSs are extremely rare. Here, we report the discovery of a gene cluster encoding both modular type I and type II PKSs as well as KAS III through extensive bioinformatics analysis, leading to the characterization of the hybrid polyketide, spirocycline A. The structure of spirocycline A is rare among all aromatic polyketides, featuring a unique starter unit and four spirocycles and forming a dimer. Biosynthetic studies indicate that the starter unit of this molecule is synthesized by type I PKS in collaboration with two trans-acting ketoreductase (KR) and enoylreductase (ER). It is then transferred by KAS III to the type II PKS system, which synthesizes the tricyclic aromatic polyketide backbone. The subsequent formation of the spirocycle and dimerization are carried out by four redox enzymes encoded in the gene cluster. Overall, the discovery of spirocycline A provides a new approach for identifying novel aromatic polyketides and offers potential enzymatic tools for the bioengineering of these hybrid polyketides.
Assuntos
Alcaloides , Vias Biossintéticas , Taxoides , Taxoides/metabolismo , Alcaloides/metabolismoRESUMO
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its prevalence is increasing. Currently, no effective therapies for PD exist. Marine-derived natural compounds are considered important resources for the discovery of new drugs due to their distinctive structures and diverse activities. In this study, tetrahydroauroglaucin (TAG), a polyketide isolated from a marine sponge, was found to have notable neuroprotective effects on MPTP/MPP+-induced neurotoxicity. RNA sequencing analysis and metabolomics revealed that TAG significantly improved lipid metabolism disorder in PD models. Further investigation indicated that TAG markedly decreased the accumulation of lipid droplets (LDs), downregulated the expression of RUBCN, and promoted autophagic flux. Moreover, conditional knockdown of Rubcn notably attenuated PD-like symptoms and the accumulation of LDs, accompanied by blockade of the neuroprotective effect of TAG. Collectively, our results first indicated that TAG, a promising PD therapeutic candidate, could suppress the accumulation of LDs through the RUBCN-autophagy pathway, which highlighted a novel and effective strategy for PD treatment.
Assuntos
Metabolismo dos Lipídeos , Fármacos Neuroprotetores , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Homeostase/efeitos dos fármacos , Poríferos/química , Camundongos , Camundongos Endogâmicos C57BL , Autofagia/efeitos dos fármacos , Masculino , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Policetídeos/farmacologia , HumanosRESUMO
Citrisorbicillinol (1), along with six other known compounds (2-7), was isolated from an endphyte Penicillium citrinum ZY-2 of Plantago asiatica L. Citrisorbicillinol (1) was characterized as a skeletally unprecedented hybrid sorbicillinoid, and its unique framework is likely formed by intermolecular [4 + 2] cycloaddition between intermediates derived from citrinin and sorbicillinoid biosynthetic gene clusters. Compounds 1 and 2 demonstrated to promote osteoblastic differentiation in MC3T3-E1 cells, and to be osteogenic in the prednisolone induced osteoporotic zebrafish. Compounds 3-7 exhibited moderate cytotoxicity against four human cancer cell lines.
Assuntos
Citrinina , Penicillium , Animais , Humanos , Estrutura Molecular , Peixe-ZebraRESUMO
Cyclic peptides with cyclophane linkers are an attractive compound type owing to the fine-tuned rigid three-dimensional structures and unusual biophysical features. Cytochrome P450 enzymes are capable of catalyzing not only the C-C and C-O oxidative coupling reactions found in vancomycin and other nonribosomal peptides (NRPs), but they also exhibit novel catalytic activities to generate cyclic ribosomally synthesized and post-translationally modified peptides (RiPPs) through cyclophane linkage. To discover more P450-modified multicyclic RiPPs, we set out to find cryptic and unknown P450-modified RiPP biosynthetic gene clusters (BGCs) through genome mining. Synergized bioinformatic analysis reveals that P450-modified RiPP BGCs are broadly distributed in bacteria and can be classified into 11â classes. Focusing on two classes of P450-modified RiPP BGCs where precursor peptides contain multiple conserved aromatic amino acid residues, we characterized 11 novel P450-modified multicyclic RiPPs with different cyclophane linkers through heterologous expression. Further mutation of the key ring-forming residues and combinatorial biosynthesis study revealed the order of bond formation and the specificity of P450s. This study reveals the functional diversity of P450 enzymes involved in the cyclophane-containing RiPPs and indicates that P450 enzymes are promising tools for rapidly obtaining structurally diverse cyclic peptide derivatives.
Assuntos
Produtos Biológicos , Ciclofanos , Peptídeos/química , Peptídeos Cíclicos/química , Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Processamento de Proteína Pós-Traducional , Produtos Biológicos/químicaRESUMO
Cyclization of linear peptides is an effective strategy to convert flexible molecules into rigid compounds, which is of great significance for enhancing the peptide stability and bioactivity. Despite significant advances in the past few decades, Nature and chemists' ability to macrocyclize linear peptides is still quite limited. P450 enzymes have been reported to catalyze macrocyclization of peptides through cross-linkers between aromatic amino acids with only three examples. Herein, we developed an efficient workflow for the identification of P450-modified RiPPs in bacterial genomes, resulting in the discovery of a large number of P450-modified RiPP gene clusters. Combined with subsequent expression and structural characterization of the products, we have identified 11 novel P450-modified RiPPs with different cross-linking patterns from four distinct classes. Our results greatly expand the structural diversity of P450-modified RiPPs and provide new insights and enzymatic tools for the production of cyclic peptides.
Assuntos
Produtos Biológicos , Ribossomos , Ribossomos/metabolismo , Peptídeos/química , Peptídeos Cíclicos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Processamento de Proteína Pós-Traducional , Produtos Biológicos/químicaRESUMO
Phomactin diterpenoids possess a unique bicyclo[9.3.1]pentadecane skeleton with multiple oxidative modifications, and are good platelet-activating factor (PAF) antagonists that can inhibit PAF-induced platelet aggregation. In this study, we identified the gene cluster (phm) responsible for the biosynthesis of phomactins from a marine fungus, Phoma sp. ATCC 74077. Despite the complexity of their structures, phomactin biosynthesis only requires two enzymes: a type I diterpene cyclase PhmA and a P450 monooxygenase PhmC. PhmA was found to catalyze the formation of the phomactatriene, while PhmC sequentially catalyzes the oxidation of multiple sites, leading to the generation of structurally diverse phomactins. The rearrangement mechanism of the diterpene scaffold was investigated through isotope labeling experiments. Additionally, we obtained the crystal complex of PhmA with its substrate analogue FGGPP and elucidated the novel metal-ion-binding mode and enzymatic mechanism of PhmA through site-directed mutagenesis. This study provides the first insight into the biosynthesis of phomactins, laying the foundation for the efficient production of phomactin natural products using synthetic biology approaches.
Assuntos
Diterpenos , Fator de Ativação de Plaquetas , FungosRESUMO
Endophytes coevolve with plant hosts and thus are more probable to acquire the character (in favor) of producing undescribed bioactive metabolites. Consequently, the topic has been intensely investigated for over two decades, but endophytic metabolites with neuroprotective effect remain scarce. The study presents the discovery of eight undescribed (named solanapyrones U-Z and prosolanapyrones A and B) and six known pyrones (solanapyrones A-C and E-G) from the culture of Nigrospora oryzae, an endophytic fungus associated with Taxus chinensis var. mairei. The structures and absolute configurations of undescribed pyrones were elucidated by extensive spectroscopic analysis, modified Mosher's method, and induced circular dichroism (ICD) spectrum. Solanapyrones A and B and an undescribed pyrone (solanapyrone U) were demonstrated to be more neuroprotective than clenbuterol in inducing bone marrow mesenchymal stem cells (bMSCs) to secret nerve growth factor (NGF). The work updates the pyrone chemodiversity in nature and extends the biofunction repertoire of solanapyrone-related polyketides.
Assuntos
Ascomicetos , Taxus , Taxus/microbiologia , Pironas/química , Dicroísmo CircularRESUMO
Flavoprotein monooxygenases (FPMOs) play important roles in generating structural complexity and diversity in natural products biosynthesized by typeâ II polyketide synthases (PKSs). In this study, we used genome mining to discover novel mutaxanthene analogues and investigated the biosynthesis of these aromatic polyketides and their unusual xanthene framework. We determined the complete biosynthetic pathway of mutaxathene through in vivo gene deletion and in vitro biochemical experiments. We show that a multifunctional FPMO, MtxO4, catalyzes ring rearrangement and generates the required xanthene ring through a multistep transformation. In addition, we successfully obtained all necessary enzymes for in vitro reconstitution and completed the total biosynthesis of mutaxanthene in a stepwise manner. Our results revealed the formation of a rare xanthene ring in typeâ II polyketide biosynthesis, and demonstrate the potential of using total biosynthesis for the discovery of natural products synthesized by typeâ II PKSs.
Assuntos
Produtos Biológicos , Policetídeos , Policetídeo Sintases/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Policetídeos/química , Metabolismo Secundário , Produtos Biológicos/químicaRESUMO
Lorneic acid and related natural products are characterized by a trialkyl-substituted benzene ring. The formation of the aromatic core in the middle of the polyketide chain is unusual. We characterized a cytochromeâ P450 enzyme that can catalyze the hallmark benzene ring formation from an acyclic polyene substrate through genetic and biochemical analysis. Using this P450 as a beacon for genome mining, we obtained 12 homologous type I polyketide synthase (PKS) gene clusters, among which two gene clusters are activated and able to produce trialkyl-substituted aromatic polyketides. Quantum chemical calculations were performed to elucidate the plausible mechanism for P450-catalyzed benzene ring formation. Our work expands our knowledge of the catalytic diversity of cytochromeâ P450.
Assuntos
Policetídeos , Policetídeos/química , Benzeno , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Sistema Enzimático do Citocromo P-450 , Metabolismo SecundárioRESUMO
Malignant glioma is the most fatal, invasive brain cancer with limited treatment options. Our previous studies show that 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1), a major metabolite of indole-3-carbinol (I3C) derived from cruciferous vegetables, produces anti-tumour effect against various tumour cell lines. In this study we characterized LTr1 as a novel anti-glioma agent. Based on screening 134 natural compounds and comparing the candidates' efficacy and toxicity, LTr1 was selected as the lead compound. We showed that LTr1 potently inhibited the viability of human glioma cell lines (SHG-44, U87, and U251) with IC50 values of 1.97, 1.84, and 2.03 µM, respectively. Furthermore, administration of LTr1 (100,300 mg· kg-1 ·d-1, i.g. for 18 days) dose-dependently suppressed the tumour growth in a U87 xenograft nude mouse model. We demonstrated that LTr1 directly bound with TrkA to inhibit its kinase activity and the downstream PI3K/AKT pathway thus inducing significant S-phase cell cycle arrest and apoptosis in SHG-44 and U87 cells by activating the mitochondrial pathway and inducing the production of reactive oxygen species (ROS). Importantly, LTr1 could cross the blood-brain barrier to achieve the therapeutic concentration in the brain. Taken together, LTr1 is a safe and promising therapeutic agent against glioma through inhibiting TrkA/PI3K/AKT pathway.
Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Glioma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases , Verduras/metabolismoRESUMO
Tetracyclines are a class of antibiotics that exhibited potent activity against a wide range of Gram-positive and Gram-negative bacteria, yet only five members were isolated from actinobacteria, with two of them approved as clinical drugs. In this work, we developed a genome mining strategy using a TetR/MarR-transporter, a pair of common resistance enzymes in tetracycline biosynthesis, as probes to find the potential tetracycline gene clusters in the actinobacteria genome database. Further refinement using the phylogenetic analysis of chain length factors resulted in the discovery of 25 distinct tetracycline gene clusters, which finally resulted in the isolation and characterization of a novel tetracycline, hainancycline (1). Through genetic and biochemical studies, we elucidated the biosynthetic pathway of 1, which involves a complex glycosylation process. Our work discloses nature's huge capacity to generate diverse tetracyclines and expands the chemical diversity of tetracyclines.
RESUMO
Six new (1-6) and seven known depsidones (7-13) were isolated from the culture of an ant (Monomorium chinensis)-derived fungus Spiromastix sp. MY-1. Their structures were elucidated by extensive spectroscopic analysis including high resolution MS, 1D and 2D NMR data. The new bromide depsidones were obtained through supplementing potassium bromide in the fermentation medium of Spiromastix sp. MY-1. All isolated compounds showed various bioactivities against the tested phytopathogenic bacteria. Particularly, new bromide compound 4, named spiromastixone S, exhibited the strongest activity against Xanthomonas oryzae pv. oryzae with a MIC value of 5.2 µmol·-1.
Assuntos
Formigas , Brometos , Animais , Antibacterianos , Depsídeos , Fungos , Lactonas , Testes de Sensibilidade Microbiana , Estrutura MolecularRESUMO
Macrocyclization is an important process that affords morphed scaffold in biosynthesis of bioactive natural products. Nature has adapted diverse biosynthetic strategies to form macrocycles. In this work, we report the identification and characterization of a small enzyme AvmM that can catalyze the construction of a 16-membered macrocyclic ring in the biosynthesis of alchivemycin A (1). We show through in vivo gene deletion, in vitro biochemical assay and isotope labelling experiments that AvmM catalyzes tandem dehydration and Michael-type addition to generate the core scaffold of 1. Mechanistic studies by crystallography, DFT calculations and MD simulations of AvmM reveal that the reactions are achieved with assistance from the special tenuazonic acid like moiety of substrate. Our results thus uncover an uncharacterized macrocyclization strategy in natural product biosynthesis.
Assuntos
Produtos Biológicos , Desidratação , Catálise , Ciclização , Humanos , MacrolídeosRESUMO
Food-drug interaction is an important but overlooked issue. For example, little is known concerning whether or not the chemotherapy of cancers is affected by the well-defined dietary chemicals such as 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1) derived from daily consumed cruciferous vegetables. This work, inspired by the described melanogenesis reduction by certain indoles, presents that LTr1 mitigates the melanogenesis and thus potentiates the in vitro and in vivo anti-melanoma effectiveness of different chemotherapeutic agents including dacarbazine, vemurafenib, and sorafenib. In B16 melanoma cells, LTr1 was shown to inhibit the melanogenesis by acting towards the regulatory (R) subunit of protein kinase A (PRKAR1a) associated with the phosphorylation of cAMP-response element binding protein (CREB). This allows LTr1 to reduce the expression of melanogenesis-related enzymes such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2). Furthermore, LTr1 was addressed to bind to the aryl hydrocarbon receptor (AhR) and up-regulate the expression of CYP1A1 encoding cytochrome P450 1A1, leading to the escalation of reactive oxygen species (ROS) level. The increased ROS generation promotes the cysteine-to-cystine transformation to inhibit the pheomelanogenesis in melanomas. Collectively, the work identifies LTr1 as a new melanogenesis inhibitor that modulates the PKA/CREB/MITF and AhR/CYP1A1/ROS pathways, thereby providing a new option for (re)sensitizing melanomas to chemotherapeutics.
Assuntos
Melanoma Experimental , Monofenol Mono-Oxigenase , Animais , Humanos , Verduras , Citocromo P-450 CYP1A1 , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Melaninas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Indóis/farmacologia , Indóis/uso terapêutico , Fator de Transcrição Associado à Microftalmia/metabolismoRESUMO
Sordarin (1) is a fungal diterpene glycoside that displays potent antifungal bioactivity through inhibition of elongation factor 2. The structures of sordarin and related compounds feature a highly rearranged tetracyclic diterpene core. In this study, we identified a concise pathway in the biosynthesis of sordarin. A diterpene cyclase (SdnA) generates the 5/8/5 cycloaraneosene framework, which is decorated by a set of P450s that catalyze a series of oxidation reactions, including hydroxylation, desaturation, and C-C bond oxidative cleavage, to give a carboxylate intermediate with a terminal alkene and a cyclopentadiene moiety. A novel Diels-Alderase SdnG catalyzes an intramolecular Diels-Alder (IMDA) reaction on this intermediate to forge the sordarin core structure. Subsequent methyl hydroxylation and glycosylation complete the biosynthesis of sordarin. Our work discloses a new strategy used by nature for the formation of the rearranged diterpene skeleton.
Assuntos
Diterpenos , Indenos , Diterpenos/química , Indenos/química , Norbornanos , EsqueletoRESUMO
Spirocitromycetin, an antiosteoporotic polyketide bearing a unique spirocycle, was characterized from a human mucus sputum-derived Penicillium velutinum. Its structure and absolute configuration were elucidated spectrally, with its biosynthetic pathway likely mediated via polivione, a reported heptaketide. Spirocitromycetin was shown to be antiosteoporotic at 0.1 µM in the prednisolone-induced osteoporotic zebrafish model. A combination of spirocitromycetin variant synthesis and bioassay has identified 5'-methyl-3'H-spiro[chromane-3,2'-furan]-3',4-dione as an unreported antiosteroporotic pharmacophore. Collectively, this work offers new starting (sub)structures that may be of significance for antiosteoporotic drug discovery.
Assuntos
Policetídeos , Animais , Estrutura Molecular , Policetídeos/farmacologia , Peixe-ZebraRESUMO
There are health benefits from consuming cruciferous vegetables that release indole-3-carbinol (I3C), but the in vivo transformation of I3C-related indoles remains underinvestigated. Here we detail the post-ingestion conversion of I3C into antitumor agents, 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1) and 3,3'-diindolylmethane (DIM), by conceptualizing and materializing the reaction flux derailing (RFD) approach as a means of unraveling these stepwise transformations to be non-enzymatic but pH-dependent and gut microbe-sensitive. In the upper (or acidic) gastrointestinal tract, LTr1 is generated through Michael addition of 3-methyleneindolium (3MI, derived in situ from I3C) to DIM produced from I3C via the formaldehyde-releasing (major) and CO2-liberating (minor) pathways. In the large intestine, 'endogenous' I3C and DIM can form, respectively, from couplings of formaldehyde with one and two molecules of indole (a tryptophan catabolite). Acid-producing gut bacteria such as Lactobacillus acidophilus facilitate the H+-promotable steps. This work updates our understanding of the merits of I3C consumption and identifies LTr1 as a drug candidate.
RESUMO
A plenty of cytochrome P450s have been annotated in the Daldinia eschosholzii genome. Inspired by the fact that some P450s have been reported to catalyze the carbon-nitrogen (C-N) bond formation, we were curious about whether hybrids through C-N bond formation could be generated in the indole-3-carbinol (I3C) exposed culture of D. eschscholzii. As expected, two skeletally undescribed polyketide-indole hybrids, designated as indolpolyketone A and B (1 and 2), were isolated and assigned to be constructed through C-N bond formation. Their structures were elucidated by 1D and 2D NMR spectra. The absolute configurations of 1 and 2 were determined by comparing the recorded and calculated electronic circular dichroism (ECD) spectra. Furthermore, the plausible biosynthetic pathways for 1 and 2 were proposed. Compounds 1 and 2 exhibited significant antiviral activity against H1N1 with IC50 values of 45.2 and 31.4 µM, respectively. In brief, compounds 1 and 2 were reported here for the first time and were the first example of polyketide-indole hybrids pieced together through C-N bond formation in the I3C-exposed culture of D. eschscholzii. Therefore, this study expands the knowledge about the chemical production of D. eschscholzii through precursor-directed biosynthesis (PDB).
RESUMO
The vicinal oxygen chelate (VOC) metalloenzyme superfamily catalyzes a highly diverse set of reactions with the mechanism characterized by the bidentate coordination of vicinal oxygen atoms to metal ion centers, but there remains a lack of a platform to steer the reaction trajectories, especially for o-quinone metabolizing pathways. Herein, we present the directed-evolution-enabled bifunctional turnover of ChaP, which is a homotetramer and represents an unprecedented VOC enzyme class. Unlike the ChaP catalysis of extradiol-like o-quinone cleavage and concomitant α-keto acid decarboxylation, a group of ChaP variants (CVs) catalyze intradiol-like o-quinone deconstruction and CO2 liberation from the resulting o-hydroxybenzoic acid scaffolds with high regioselectivity. Enzyme crystal structures, labeling experiments and computational simulations corroborated that the D49L mutation allows the metal ion to change its coordination with the tyrosine phenoxy atoms in different monomers, thereby altering the reaction trajectory with the regiospecificity further improved by the follow-up replacement of the Y92 residue with any of alanine, glycine, threonine, and serine. The study highlights the unpredicted catalytic versatility and enzymatic plasticity of VOC enzymes with biotechnological significance.