Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Womens Health ; 22(1): 554, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36578004

RESUMO

BACKGROUND: Endometrial carcinoma (EC) is a common malignant tumor of the female reproductive system, often accompanied by lymph node metastasis. Artificial vascular implantation is a common surgical treatment for mediastinal tumors and abdominal aortic aneurysms but is rarely used in gynecological surgery. CASE PRESENTATION: A 54-year-old female patient was first admitted to the hospital in January 2018 due to "irregular vaginal bleeding over 3 months". CT showed a mass in the uterine cavity, and several swollen lymph nodes in the retroperitoneum and pelvic cavity. The initial diagnosis was an endometrial malignant tumor. We performed radical endometrial cancer surgery with parallel resection of inferior vena cava, abdominal aorta, bilateral common iliac arteries, bilateral external iliac arteries, and artificial vessel replacement, which was successful, with good postoperative recovery and no lesion progression at 3 years postoperative follow-up. CONCLUSION: This is an early case of gynecological clinical use of prostheses. Through multidisciplinary cooperation, the surgical resection rate of patients with EC in radical surgery was improved without serious fatal complications and achieved a high long-term postoperative survival rate.


Assuntos
Aorta Abdominal , Neoplasias do Endométrio , Humanos , Feminino , Pessoa de Meia-Idade , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/cirurgia , Aorta Abdominal/patologia , Artéria Ilíaca/cirurgia , Artéria Ilíaca/patologia , Veia Cava Inferior/cirurgia , Veia Cava Inferior/patologia , Excisão de Linfonodo , Neoplasias do Endométrio/cirurgia , Neoplasias do Endométrio/patologia
2.
Nanotechnology ; 33(8)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34787106

RESUMO

Transition metal oxides are generally designed as hybrid nanostructures with high performance for supercapacitors by enjoying the advantages of various electroactive materials. In this paper, a convenient and efficient route had been proposed to prepare hierarchical coral-like MnCo2O4.5@Co-Ni LDH composites on Ni foam, in which MnCo2O4.5nanowires were enlaced with ultrathin Co-Ni layered double hydroxides nanosheets to achieve high capacity electrodes for supercapacitors. Due to the synergistic effect of shell Co-Ni LDH and core MnCo2O4.5, the outstanding electrochemical performance in three-electrode configuration was triggered (high area capacitance of 5.08 F cm-2at 3 mA cm-2and excellent rate capability of maintaining 61.69% at 20 mA cm-2), which is superior to those of MnCo2O4.5, Co-Ni LDH and other metal oxides based composites reported. Meanwhile, the as-prepared hierarchical MnCo2O4.5@Co-Ni LDH electrode delivered improved electrical conductivity than that of pristine MnCo2O4.5. Furthermore, the as-constructed asymmetric supercapacitor using MnCo2O4.5@Co-Ni LDH as positive and activated carbon as negative electrode presented a rather high energy density of 220µWh cm-2at 2400µW cm-2and extraordinary cycling durability with the 100.0% capacitance retention over 8000 cycles at 20 mA cm-2, demonstrating the best electrochemical performance compared to other asymmetric supercapacitors using metal oxides based composites as positive electrode material. It can be expected that the obtained MnCo2O4.5@Co-Ni LDH could be used as the high performance and cost-effective electrode in supercapacitors.

3.
Brain Behav ; 11(11): e2354, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34559467

RESUMO

INTRODUCTION: Patients with comorbidity of ischemic stroke (IS) and diabetes mellitus (DM) show poor neurological functional recovery, and ischemic postconditioning (IPOC) should be considered a powerful neuroprotective method for IS. However, whether it should be introduced for patients with IS and DM remains controversial. This study established a DM with IS (DMIS) tree shrew model, which was intervened by IPOC to assess its neuroprotective effects and also to analyze the relevant mechanism by RNA-sequence and bioinformatics analysis. METHODS: Fifty-four tree shrews were randomly divided into a sham operation control group, a DMIS group, and an IPOC group (DMIS model), with 18 tree shrews per group. Triphenyl tetrazolium chloride (TTC), hematoxylin-eosin (HE) staining, transmission electron microscopy (TEM), and RNA-sequence analysis were performed to assess the IPOC effect. RESULTS: IPOC reduced infarct size and reduced nerve cell injury in IS tree shrews with DM. RNA-seq analysis showed that IPOC significantly increased the expression of the homeobox protein SIX3, while downregulating the expression of HLA class II histocompatibility antigens DQ beta 1 chain, CAS1 domain-containing protein 1, and cytokine receptor-like factor 2. The most downregulated signaling pathways include the NF-κB signaling pathway, TNF signaling pathway, and Fc gamma R-mediated phagocytosis. CONCLUSIONS: IPOCs have a neuroprotective effect in a DMIS animal model that reduces infarct size and nerve cell injury. This mechanism might be related to reducing inflammation and stress responses that decreases the activity of TNF and NF-κB signaling pathways.


Assuntos
Diabetes Mellitus , AVC Isquêmico , Fármacos Neuroprotetores , Animais , Modelos Animais de Doenças , RNA , Análise de Sequência de RNA , Tupaia , Tupaiidae
4.
Metab Brain Dis ; 36(7): 1889-1901, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34417941

RESUMO

Nowadays, similar strategies have been used for the treatment and prevention of acute stroke in both diabetes mellitus (DM) and non-DM populations. These strategies were analyzed to provide an experimental basis for the clinical prevention and treatment of stroke in patients both with and without DM. Tree shrews were randomly divided into control, DM, ischemic stroke (IS), and DMIS groups with 18 animals in each group. Serum biochemical indicators were used to assess metabolic status. Neural tissue damage was determined using triphenyl tetrazolium chloride staining, H-E staining, and electron microscopy. Differential gene expression of neural tissue between the DM and control groups and the IS and DMIS groups was measured using RNA-seq analysis. The serum glucose levels of the DM and DMIS groups were significantly higher than other groups. In the DMIS group, the infarct size was significantly larger than in the IS group (19.56 ± 1.25%), with a more obvious abnormal ultrastructure of neural cells. RNA-seq analysis showed that the expression of IL-8, C-C motif chemokine 2 (CCL2), and alpha-1-antichymotrypsin was significantly higher in the DM group than in the control group. The CCL7, ATP-binding cassette sub-family A member 12, and adhesion G protein-coupled receptor E2 levels were significantly higher in the DMIS group than in the IS group. For the prevention and treatment of stroke in patients with DM, reducing the inflammatory state of the nervous system may reduce the incidence of stroke and improve the prognosis of neurological function after IS.


Assuntos
Isquemia Encefálica , Diabetes Mellitus Tipo 2 , Diabetes Mellitus , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Encéfalo/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Diabetes Mellitus Tipo 2/genética , Isquemia , AVC Isquêmico/genética , Análise de Sequência de RNA , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/terapia , Tupaia/genética , Tupaiidae/genética
5.
J Colloid Interface Sci ; 586: 797-806, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33198984

RESUMO

Rational design of composite electrode materials with novel nanostructures plays an important role in improving both high energy density and structure stability of flexible and wearable supercapacitors. Herein, numerous peculiar three-dimensional hierarchical core-shell CuCo2O4@Co(OH)2 nanoflakes directly grown on Ni foam are synthesized via a facile hydrothermal method and subsequent electrodeposition technique. Ultrathin Co(OH)2 nanosheets arrays vertically anchored on CuCo2O4 nanoflakes can not only improve the electrical conductivity, but also provide interconnected channels for ion diffusion and enrich electrochemical active sites to boost faradaic redox reaction, leading to the enhanced electrochemical behavior. Excellent electrochemical performance of CuCo2O4@Co(OH)2 electrode can be reflected on a higher specific capacitance of 1558 F/g and lower resistance compared with that of the pristine CuCo2O4 electrode. The asymmetric flexible supercapacitor assembled by the optimized CuCo2O4@Co(OH)2 electrode and activated carbon exhibits high energy density of 62.5 Wh/kg at 893 W/kg, outstanding cycle stability of 88.6% capacitance retention after 10,000 cycles and remarkable mechanical flexibility, performing the best electrochemical behavior among various metal oxides based asymmetric supercapacitors. All above results indicate that the resulted hierarchical core-shell CuCo2O4@Co(OH)2 electrode can be a promising candidate for flexible energy storage devices.

6.
J Diabetes Res ; 2020: 6286571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104713

RESUMO

Ischemic postconditioning (PC) is proved to efficiently protect diabetic patients with acute myocardial infarction from ischemia-reperfusion injury. We aimed to explore the protective roles of ischemic PC on diabetic retinopathy in tree shrews with diabetic cerebral ischemia. A diabetic tree shrew model was established through high-fat diet feeding combined with streptozotocin (STZ) injection, while cortical thrombotic cerebral ischemia was induced photochemically. Tree shrews were divided into the normal control group, sham operation group, diabetes mellitus group, diabetes mellitus+cerebral ischemia group, and diabetes mellitus+cerebral ischemia+PC group (in which the tree shrews with diabetic cerebral ischemia were treated with ischemic PC). H&E staining was used to examine the pathological changes in the retina, and immunohistochemistry was performed to determine the retinal expression of VEGF (vascular endothelial growth factor). The modeling resulted in 77% tree shrews with diabetes. Ischemic PC reduced the blood glucose levels in the tree shrews with diabetic cerebral ischemia. Tree shrews with diabetes had thinned retina with disordered structures, and these pathological changes were aggravated after cerebral ischemia. The retinopathy was alleviated after ischemic PC. Retina expression of VEGF was mainly distributed in the ganglion cell layer in tree shrews. Diabetes and cerebral ischemia increased retinal VEGF expression in a step-wise manner, while additional ischemic PC reduced retinal VEGF expression. Therefore, ischemic PC effectively alleviates retinopathy in tree shrews with diabetic cerebral ischemia, and this effect is associated with reduced retinal VEGF expression.


Assuntos
Isquemia Encefálica/complicações , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/terapia , Pós-Condicionamento Isquêmico/métodos , Animais , Glicemia/metabolismo , Isquemia Encefálica/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Masculino , Retina/metabolismo , Resultado do Tratamento , Tupaiidae , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA