RESUMO
BACKGROUND: A common complication of wounds is exuberant growth of fibrotic scar tissue, which can lead to hypertrophic scars or keloids. There are currently no treatments with good evidence for preventing excessive scar tissue formation. In this study, we explored the use of microneedle patches containing siRNA inhibiting SPARC mRNA in reducing the volume of post-surgical scars. OBJECTIVE: We aim to compare the differences in the volume of post-surgical scars between daily application of siRNA-embedded dissolving microneedle patches and silicone sheets. The primary study outcome measure was the 3D volume of scar elevation.Our hypothesis was that scar formation in the half of the wound treated with siRNA microneedle patches will be lesser, as reflected by a smaller 3D volume, as compared to the half treated with silicone sheets. METHODS: This was an 8-week, single-blinded intra-individually controlled randomised trial in a tertiary dermatological centre. Patients with two-week-old post-operative wounds were recruited. Each half of the scar was randomly assigned to the microneedle patch or silicone sheet. Three-dimensional (3D) volumes were obtained from the scars via a high-resolution scanner at day 0, 30 and 60. RESULTS: At day 30, scars treated with the microneedle patches had a lower geometric mean volume of 0.79mm3 when compared to scars treated with silicone sheets, with a difference in mean percentage volume reduction of 10.70%.At day 60, scars treated with the microneedle patches had a statistically significant lower volume (8.88mm3) when compared to the side treated with silicone sheets (12.77mm3, p=0.005), with a difference in mean percentage reduction of 9.66%. Additionally, there was also a statistically significant difference between the percentage reduction in scar volume, compared to baseline, on the side treated with microneedle patches (mean=83.78%) compared to the side treated with silicone sheets (mean=74.11%). CONCLUSIONS: There was a significantly greater reduction in the volume of post-surgical scars on the side treated with microneedle patches compared to the side treated with silicone sheets. This demonstrates the use of transdermal gene silencing technology for scar inhibition and that siRNA microneedle patches can be an effective and safe modality in the reduction of scar tissue formation. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR), ACTRN12622000558729, https://www.anzctr.org.au.
RESUMO
Ribonucleic acid (RNA) therapeutics hold great potential for the advancement of dermatological treatments due to, among other reasons, the possibility of treating previously undruggable targets, high specificity with minimal side effects, and ability to include multiple RNA targets in a single product. Although there have been research relating to RNA therapeutics for decades, there have not been many products translated for clinical use until recently. This may be because of challenges to the application of RNA therapeutics, including the dearth of effective modes of delivery to the target, and rapid degradation of RNA in the human body and environment. This article aims to provide insight on (1) the wide-ranging possibilities of RNA therapeutics in the field of dermatology as well as (2) how key challenges can be addressed, so as to encourage the development of novel dermatological treatments. We also share our experience on how RNA therapeutics have been applied in the management of hypertrophic and keloid scars.
Assuntos
Queloide , Humanos , Queloide/terapia , Cicatriz Hipertrófica/terapia , Cicatriz Hipertrófica/tratamento farmacológico , RNA/uso terapêutico , Dermatologia/métodos , Dermatopatias/terapia , Dermatopatias/tratamento farmacológico , Terapia Genética/métodosRESUMO
Surgical management of basal cell carcinoma (BCC) typically involves surgical excision with post-operative margin assessment using the bread-loafing technique; or gold-standard Mohs micrographic surgery (MMS), where margins are iteratively examined for residual cancer after tumour removal, with additional excisions performed upon detecting residual tumour at margins. There is limited sampling of resection margins with bread loafing, with detection of positive margins 44% of the time using 2 mm intervals. To resolve this, we have developed three-dimensional (3D) Tissue Imaging for: (1) complete examination of cancer margins and (2) detection of tumour proximity to nerves and blood vessels. 3D Tissue optical clearing with a light sheet imaging protocol was developed for margin assessment in two datasets assessed by two independent evaluators: (1) 48 samples from 29 patients with varied BCC subtypes, sizes and pigmentation levels; (2) 32 samples with matching Mohs' surgeon reading of tumour margins using two-dimensional haematoxylin & eosin-stained sections. The 3D Tissue Imaging protocol permits a complete examination of deeper and peripheral margins. Two independent evaluators achieved negative predictive values of 92.3% and 88.24% with 3D Tissue Imaging. Images obtained from 3D Tissue Imaging recapitulates histological features of BCC, such as nuclear crowding, palisading and retraction clefting and provides a 3D context for recognising normal skin adnexal structures. Concurrent immunofluorescence labelling of nerves and blood vessels allows visualisation of structures closer to tumour-positive regions, which may have a higher risk for neural and vascular infiltration. Together, this method provides more information in a 3D spatial context, enabling better cancer management by clinicians.
Assuntos
Carcinoma Basocelular , Imageamento Tridimensional , Margens de Excisão , Cirurgia de Mohs , Neoplasias Cutâneas , Humanos , Carcinoma Basocelular/diagnóstico por imagem , Carcinoma Basocelular/cirurgia , Carcinoma Basocelular/patologia , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/cirurgia , Neoplasias Cutâneas/patologiaRESUMO
Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.
Assuntos
Reprogramação Celular , Neoplasias , Neovascularização Patológica , Neutrófilos , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neutrófilos/imunologia , Proteômica , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Epigênese Genética , Hipóxia , Transcrição GênicaRESUMO
Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.
Assuntos
Encéfalo , Colesterol , Células-Tronco Pluripotentes Induzidas , Microglia , Células-Tronco Neurais , Neurogênese , Organoides , Animais , Humanos , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Microglia/citologia , Microglia/metabolismo , Organoides/citologia , Organoides/metabolismo , Colesterol/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Axônios , Proliferação de Células , Ésteres/metabolismo , Gotículas Lipídicas/metabolismoRESUMO
Background: Chronic pruritus of unknown origin (CPUO) is poorly understood and lacks effective treatment options. Objectives: We aimed to elucidate abnormalities in the sweat apparatus of patients with CPUO, and to assess efficacy and safety of treatment with systemic retinoids. Methods: An initial case-control study included 20 affected patients and five healthy controls, for whom heat and sweating were induced, either through a standardized exercise protocol or ingestion of hot water. In vivo high-definition optical coherence tomography, whole-body starch-iodine testing, and skin biopsy for immunofluorescence staining were done to evaluate for sweat duct obstruction. A subsequent retrospective cohort analysis included 56 patients with CPUO, seen at an Itch subspecialty clinic of a single tertiary referral centre, who failed conventional treatments and were treated with isotretinoin and/or acitretin from May 2014 to November 2020. Treatment response to retinoids was defined as a sustained reduction in itch score of ≥2/10. Safety was assessed by proportion stopping treatment due to side effects. Results: In vivo imaging in 19 (95%) patients revealed features of partial keratinaceous sweat duct obstruction with statistically significant luminal dilatation compared to controls. Immunofluorescence studies of three patients' paired lesional/non-lesional biopsies revealed dermcidin accumulation within sweat glands coupled with dermcidin leakage in itchy skin. Fifty-six patients (mean [SD] age 55.2 [17.5] years, 69.6% male) were treated with systemic retinoids. Mean (SD) duration of itch was 116.3 (140.4) months and mean (SD) itch score was 8.2 (1.8). Forty-one (73.2%) initially received isotretinoin, and 15 (26.8%) acitretin. At three months, mean itch score reduced by 2.38 (95% CI -3.2 to -1.6, p < 0.0001). Thirty-eight (67.9%) had a sustained response. Eight (14.81%) achieved an itch score of 0 or 1, with four stopping treatment for a mean (SD) of 318.5 (291.2) days without relapse. Eight (14.3%) stopped or switched retinoid due to adverse effects, with similar incidences between both retinoids, the commonest being dryness. Conclusion: Based on novel findings from physiological imaging studies identifying partial keratinaceous sweat duct obstruction in CPUO, we instituted systemic retinoid treatment to address the underlying pathology. In patients who failed conventional therapies, the treatment appears effective and safe.
RESUMO
Langerhans cell histiocytosis (LCH) is a potentially fatal neoplasm characterized by the aberrant differentiation of mononuclear phagocytes, driven by mitogen-activated protein kinase (MAPK) pathway activation. LCH cells may trigger destructive pathology yet remain in a precarious state finely balanced between apoptosis and survival, supported by a unique inflammatory milieu. The interactions that maintain this state are not well known and may offer targets for intervention. Here, we used single-cell RNA-seq and protein analysis to dissect LCH lesions, assessing LCH cell heterogeneity and comparing LCH cells with normal mononuclear phagocytes within lesions. We found LCH discriminatory signatures pointing to senescence and escape from tumor immune surveillance. We also uncovered two major lineages of LCH with DC2- and DC3/monocyte-like phenotypes and validated them in multiple pathological tissue sites by high-content imaging. Receptor-ligand analyses and lineage tracing in vitro revealed Notch-dependent cooperativity between DC2 and DC3/monocyte lineages during expression of the pathognomonic LCH program. Our results present a convergent dual origin model of LCH with MAPK pathway activation occurring before fate commitment to DC2 and DC3/monocyte lineages and Notch-dependent cooperativity between lineages driving the development of LCH cells.
Assuntos
Histiocitose de Células de Langerhans , Neoplasias , Humanos , Linhagem da Célula , Histiocitose de Células de Langerhans/metabolismo , Histiocitose de Células de Langerhans/patologia , Diferenciação Celular , Monócitos/metabolismoRESUMO
Circulating Ly6Chi monocytes often undergo cellular death upon exhaustion of their antibacterial effector functions, which limits their capacity for subsequent macrophage differentiation. This shrouds the understanding on how the host replaces the tissue-resident macrophage niche effectively during bacterial invasion to avert infection morbidity. Here, we show that proliferating transitional premonocytes (TpMos), an immediate precursor of mature Ly6Chi monocytes (MatMos), were mobilized into the periphery in response to acute bacterial infection and sepsis. TpMos were less susceptible to apoptosis and served as the main source of macrophage replenishment when MatMos were vulnerable toward bacteria-induced cellular death. Furthermore, TpMo and its derived macrophages contributed to host defense by balancing the proinflammatory cytokine response of MatMos. Consequently, adoptive transfer of TpMos improved the survival outcome of lethal sepsis. Our findings hence highlight a protective role for TpMos during bacterial infections and their contribution toward monocyte-derived macrophage heterogeneity in distinct disease outcomes.
Assuntos
Infecções Bacterianas , Sepse , Animais , Citocinas , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , MonócitosRESUMO
As the largest organ of the body, the skin is a key barrier tissue with specialized structures where ongoing immune surveillance is critical for protecting the body from external insults. The innate immune system acts as first-responders in a coordinated manner to react to injury or infections, and recent developments in intravital imaging techniques have made it possible to delineate dynamic immune cell responses in a spatiotemporal manner. We review here key studies involved in understanding neutrophil, dendritic cell and macrophage behavior in skin and further discuss how this knowledge collectively highlights the importance of interactions and cellular functions in a systems biology manner. Furthermore, we will review emerging imaging technologies such as high-content proteomic screening, spatial transcriptomics and three-dimensional volumetric imaging and how these techniques can be integrated to provide a systems overview of the immune system that will further our current knowledge and lead to potential exciting discoveries in the upcoming decades.
Assuntos
Microscopia Intravital , Proteômica , Humanos , Microscopia Intravital/métodos , Macrófagos , Neutrófilos , PeleRESUMO
Tissue-resident macrophages in white adipose tissue (WAT) dynamically adapt to the metabolic changes of their microenvironment that are often induced by excess energy intake. Currently, the exact contribution of these macrophages in obesity-driven WAT remodeling remains controversial. Here, using a transgenic CD169-DTR mouse strain, we provide new insights into the interplay between CD169+ adipose tissue macrophages (ATMs) and their surrounding WAT microenvironment. Using targeted in vivo ATM ablation followed by transcriptional and metabolic WAT profiling, we found that ATMs protect WAT from the excessive pathological remodeling that occurs during obesity. As obesity progresses, ATMs control not only vascular integrity, adipocyte function, and lipid and metabolic derangements but also extracellular matrix accumulation and resultant fibrosis in the WAT. The protective role of ATMs during obesity-driven WAT dysfunction supports the notion that ATMs represent friends, rather than foes, as has previously assumed.
Assuntos
Tecido Adiposo , Macrófagos , Tecido Adiposo Branco , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos ObesosRESUMO
The complex bone marrow microenvironment or niche is an important anatomical structure responsible for hematopoiesis and providing support to the immune cells function. Being the source of immune and blood cells, the interaction of these hematopoietic stem and progenitor cells with the cellular niches regulates their ability for self-renewal, proliferation, and differentiation. Dynamic imaging not only provides spatiotemporal information of cell motility but also the morphological changes due to cell-cell interactions in the bone marrow, providing insights into the ongoing physiological activities within the tissue. Here, we describe customized stages with compatible equipment best suited for the upright two-photon microscope, accompanied by detailed methods for both calvarial and tibial intravital imaging. We demonstrate a general protocol for calvarial imaging using a minimally invasive surgical approach, and introduce a bone shaving-based tibial imaging as a complementary method. To demonstrate the applicability of our method we used Lyz2-EGFP transgenic mice to track bone marrow neutrophil activities as an example.
Assuntos
Medula Óssea/fisiologia , Rastreamento de Células , Células-Tronco Hematopoéticas/fisiologia , Microscopia Intravital , Microscopia de Fluorescência por Excitação Multifotônica , Neutrófilos/fisiologia , Crânio/fisiologia , Nicho de Células-Tronco , Tíbia/fisiologia , Animais , Medula Óssea/metabolismo , Movimento Celular , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Muramidase/genética , Muramidase/metabolismo , Neutrófilos/metabolismo , Crânio/citologia , Crânio/metabolismo , Tíbia/citologia , Tíbia/metabolismoRESUMO
A functional lymphatic vasculature is essential for tissue fluid homeostasis, immunity, and lipid clearance. Although atherosclerosis has been linked to adventitial lymphangiogenesis, the functionality of aortic lymphatic vessels draining the diseased aorta has never been assessed and the role of lymphatic drainage in atherogenesis is not well understood. We develop a method to measure aortic lymphatic transport of macromolecules and show that it is impaired during atherosclerosis progression, whereas it is ameliorated during lesion regression induced by ezetimibe. Disruption of aortic lymph flow by lymphatic ligation promotes adventitial inflammation and development of atherosclerotic plaque in hypercholesterolemic mice and inhibits ezetimibe-induced atherosclerosis regression. Thus, progression of atherosclerotic plaques may result not only from increased entry of atherogenic factors into the arterial wall but also from reduced lymphatic clearance of these factors as a result of aortic lymph stasis. Our findings suggest that promoting lymphatic drainage might be effective for treating atherosclerosis.
Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aorta/patologia , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Ezetimiba/farmacologia , Ezetimiba/uso terapêutico , Linfangiogênese , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologiaRESUMO
Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.
Assuntos
Células Precursoras de Granulócitos/citologia , Monócitos/citologia , Mielopoese/fisiologia , Neutrófilos/citologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Célula ÚnicaRESUMO
Skin histology is traditionally carried out using two-dimensional tissue sections, which allows for rapid staining, but these sections cannot accurately represent three-dimensional structures in skin such as nerves, vasculature, hair follicles, and sebaceous glands. Although it may be ideal to image skin in a three-dimensional manner, it is technically challenging to image deep into tissue because of light scattering from collagen fibrils in the dermis and refractive index mismatch owing to the presence of differing biological materials such as cytoplasm, and lipids in the skin. Different optical clearing methods have been developed recently, making it possible to render tissues transparent using different approaches. Here, we discuss the steps involved in tissue preparation for three-dimensional volumetric imaging and provide a brief overview of the different optical clearing methods as well as different imaging modalities for three-dimensional imaging.
Assuntos
Biópsia/métodos , Folículo Piloso/diagnóstico por imagem , Imageamento Tridimensional , Imagem Óptica/métodos , Glândulas Sebáceas/diagnóstico por imagem , Dermatopatias/diagnóstico por imagem , Animais , Colágeno/química , Citoplasma/metabolismo , Derme/diagnóstico por imagem , Humanos , Luz , Lipídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Permeabilidade , Refratometria , Espalhamento de Radiação , SolventesRESUMO
Optical imaging is a valuable tool to visualise biological processes in the context of the tissue. Each imaging modality provides the biologist with different types of information - cell dynamics and migration over time can be tracked with time-lapse imaging (e.g. intra-vital imaging); an overview of whole tissues can be acquired using optical clearing in conjunction with light sheet microscopy; finer details such as cellular morphology and fine nerve tortuosity can be imaged at higher resolution using the confocal microscope. Multi-modal imaging combined with image cytometry - a form of quantitative analysis of image datasets - provides an objective basis for comparing between sample groups. Here, we provide an overview of technical aspects to look out for in an image cytometry workflow, and discuss issues related to sample preparation, image post-processing and analysis for intra-vital and whole organ imaging.
RESUMO
Optical imaging is a valuable tool to visualise biological processes in the context of the tissue. Each imaging modality provides the biologist with different types of information - cell dynamics and migration over time can be tracked with time-lapse imaging (e.g. intra-vital imaging); an overview of whole tissues can be acquired using optical clearing in conjunction with light sheet microscopy; finer details such as cellular morphology and fine nerve tortuosity can be imaged at higher resolution using the confocal microscope. Multi-modal imaging combined with image cytometry - a form of quantitative analysis of image datasets - provides an objective basis for comparing between sample groups. Here, we provide an overview of technical aspects to look out for in an image cytometry workflow, and discuss issues related to sample preparation, image post-processing and analysis for intra-vital and whole organ imaging.
Assuntos
Citometria por Imagem , Animais , Encéfalo/citologia , Conjuntos de Dados como Assunto , Previsões , Humanos , Citometria por Imagem/métodos , Citometria por Imagem/tendências , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Confocal , SoftwareAssuntos
Dermatite Atópica/diagnóstico por imagem , Epiderme/inervação , Imageamento Tridimensional , Terminações Nervosas/patologia , Psoríase/diagnóstico por imagem , Biópsia por Agulha , Estudos de Casos e Controles , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Epiderme/diagnóstico por imagem , Epiderme/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Prurido/diagnóstico por imagem , Prurido/metabolismo , Prurido/patologia , Psoríase/metabolismo , Psoríase/patologia , Valores de Referência , Índice de Gravidade de Doença , Imagens com Corantes Sensíveis à VoltagemRESUMO
Image cytometry is the process of converting image data to flow cytometry-style plots, and it usually requires computer-aided surface creation to extract out statistics for cells or structures. One way of dealing with structures stained with multiple markers in three-dimensional images, is carrying out multiple rounds of channel co-localization and image masking before surface creation, which is cumbersome and laborious. We propose the application of the hue-saturation-brightness color space to streamline this process, which produces complete surfaces, and allows the user to have a global view of the data before flexibly defining cell subsets. Spectral compensation can also be performed after surface creation to accurately resolve different signals. We demonstrate the utility of this workflow in static and dynamic imaging datasets of a needlestick injury on the mouse ear, and we believe this scalable and intuitive approach will improve the ease of performing histocytometry on biological samples.