RESUMO
Ultraviolet radiation is the primary determinant for vitamin D synthesis. Sunlight is inefficient and poses a risk, particularly for long-term exposure. In this study, we screened the most favorable wavelength for vitamin D synthesis among four types of narrowband light-emitting diodes (LEDs) and then irradiated osteoporosis rats with the optimal wavelength for 3-12 months. The 297â nm narrowband LED was the most efficient. Long-term radiation increased vitamin D levels in all osteoporotic rats and improved bone health. No skin damage was observed during irradiation. Our findings provide an efficient and safe method of vitamin D supplementation.
RESUMO
The accuracy of noninvasive continuous glucose monitoring (CGM) through near-infrared scattering is challenged by mixed scattering signals from different compartments, where glucose has a positive correlation with a blood scattering coefficient but a negative correlation with a tissue scattering coefficient. In this study, we developed a high-accuracy noninvasive CGM based on OCT angiography (OCTA)-purified blood scattering signals. The blood optical scattering coefficient (BOC) was initially extracted from the depth attenuation of backscattered light in OCT and then purified by eliminating the scattering signals from the surrounding tissues under the guidance of a 3D OCTA vascular map in human skin. The purified BOC was used to estimate the optical blood glucose concentration (BGC) through a linear calibration. The optical and reference BGC measurements were highly correlated (R = 0.94) without apparent time delay. The mean absolute relative difference was 6.09%. All optical BGC measurements were within the clinically acceptable Zones A + B, with 96.69% falling in Zone A on Parke's error grids. The blood glucose response during OGTT was mapped with a high spatiotemporal resolution of the single vessel and 5 seconds. This noninvasive OCTA-based CGM shows promising accuracy for clinical use. Future research will involve larger sample sizes and diabetic participants to confirm these preliminary findings.
RESUMO
Escherichia coli and Salmonella Typhimurium are the main pathogens of diarrhea in weaned piglets. The prevention of bacterial diarrhea in weaned piglets by phage is rarely reported. We conducted this study to evaluate the preventive effect of phages on mixed Escherichia coli and Salmonella Typhimurium infections in weaned piglets. A novel phage named NJ12 was isolated by using Salmonella Typhimurium SM022 as host bacteria and characterized by electron microscopy, genomic analysis and in vitro bacteriostatic activity. Phage NJ12 and a previously reported phage EP01 were microencapsulated with sodium alginate to make phage cocktail. Microencapsulated phage cocktail and PBS (Phosphate buffer solution) were used to piglets the phage and phage-free group through oral administration before bacterial infection 2 h, respectively. Piglets of the phage and phage-free group were consumed with feed contaminated with 6 mL (108CFU/mL) Escherichia coli O157:H7 GN07 (GXEC-N07) and 6 mL (108CFU/mL) SM022 every day for seven consecutive days. The results showed that piglets in the phage-free group had more severe diarrhea, larger decreased average weight gain and higher levels of neutrophils compared with piglets in phage group. Meanwhile, piglets in the phage-free group had higher load of SM022 and GN07 in jejunal tissue and more severe intestinal damage compared with piglets in group phage in vivo. In addition, oral administration phage can significant decreased the relative abundance of Enterobacteriaceae but hardly repaired the changes of diversity and composition of gut microbiota caused by the mixed infection of SM022 and GN07. This implies that phage used as a feed additive have a marvelous preventive effect on bacterial diarrhea during weaning of piglets.
Assuntos
Bacteriófagos , Disenteria , Infecções por Escherichia coli , Escherichia coli O157 , Infecções por Salmonella , Doenças dos Suínos , Animais , Suínos , Salmonella typhimurium , Escherichia coli O157/genética , Desmame , Diarreia/prevenção & controle , Diarreia/veterinária , Diarreia/microbiologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Disenteria/veterinária , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologiaRESUMO
AIMS: This study aimed to explore the relationship between workplace bullying among nurses and their professional quality of life, as well as the mediating role of coping styles between the two factors. BACKGROUND: In China, the overall status of nurses' professional quality of life is not optimistic, and the problems of low compassion satisfaction and high compassion fatigue persist. Workplace bullying, which is a serious global issue, can negatively impact the mental health and professional quality of nurses. However, it has still not attracted enough attention from managers. METHODS: The study used a cross-sectional research design and surveyed 297 clinical nurses from two tertiary grade A hospitals in Wuhan, China. Data were collected through an online questionnaire survey from March to May 2022. The data were analyzed using descriptive statistical methods, including Pearson correlation analysis and structural equation modeling. RESULTS: The score for nurses' workplace bullying was 38.72 ± 12.30. The scores for the three dimensions of professional quality of life were 27.56 ± 4.79 for compassion satisfaction, 30.51 ± 4.33 for burnout, and 28.47 ± 4.65 for secondary trauma stress. The scores for positive coping style and negative coping style were 34.59 ± 5.72 and 20.34 ± 5.08 points, respectively. Workplace bullying had a direct negative effect on compassion satisfaction, as well as positive direct effects on burnout and secondary traumatic stress. Coping styles played a mediating effect between workplace bullying and the pairwise relationships of compassion satisfaction, burnout, and secondary trauma stress. CONCLUSION: Workplace bullying hurts nurses' professional quality of life while coping styles plays an mediating role between workplace bullying and professional quality of life. Nursing managers can improve nurses' professional quality of life by reducing workplace bullying and enhancing positive coping style. IMPLICATIONS FOR NURSING MANAGEMENT: Nursing managers can employ management wisdom and techniques to mitigate the presence and detrimental effects of workplace bullying. This, in turn, promotes a positive work environment and enhances the professional quality of life for nurses.
RESUMO
Salmonellosis is a disease caused by non-typhoid Salmonella, and although some lactic acid bacteria strains have been shown previously to relieve Salmonellosis symptoms, little has been studied about the preventive mechanism of Lentilactobacillus buchneri (L. buchneri) against Salmonella infection in vivo. Therefore, the L. buchneri was fed to C57BL/6 mice for 10 days to build a protective system of mice to study its prevention and possible mechanisms. The results showed that L. buchneri GX0328-6 alleviated symptoms caused by Salmonella typhimurium infection among C57BL/6 mice, including low survival rate, weight loss, increase in immune organ index and hepatosplenomegaly, and modulated serum immunoglobulin levels and intrinsic immunity. Importantly, the L. buchneri GX0328-6 enhanced the mucosal barrier of the mouse jejunum by upregulating the expression of tight junction proteins such as ZO-1, occludins, and claudins-4 and improved absorptive capacity by increasing the length of mouse jejunal villus and the ratio of villus length to crypt depth and decreasing the crypt depth. L. buchneri GX0328-6 reduced the intestinal proliferation and invasion of Salmonella typhimurium by modulating the expression of antimicrobial peptides in the intestinal tract of mice, and reduced intestinal inflammation and systemic spread in mice by downregulating the expression of IL-6 and promoting the expression of IL-10. Furthermore, L. buchneri GX0328-6 increased the relative abundance of beneficial bacteria colonies and decreased the relative abundance of harmful bacteria in the cecum microflora by modulating the microflora in the cecum contents.
RESUMO
BACKGROUND: Escherichia coli (E. coli) is a common pathogen that often causes diarrhea in piglets. Since bacteria are becoming more and more resistant to antibiotics, phages have become a promising alternative therapy. However, the therapy of oral phage often fails to achieve the desired effect. A novel phage named A221 was isolated by using E. coli GXXW-1103 as host strain, characterized by electron microscopy, genomic sequencing and analyzed by measuring lysis ability in vitro. RESULTS: Phage A221 was identified as a member of Ackermannviridae, Aglimvirinae, Agtrevirus with 153297 bp genome and effectively inhibited bacterial growth in vitro for 16 h. This study was conducted to evaluate the therapeutic effect of oral microencapsulated phage A221 on E. coli GXXW-1103 infections in weaned piglets. The protective effect of phage was evaluated by body weight analysis, bacterial load and histopathological changes. The results showed that with the treatment of phage A221, the body weight of piglets increased, the percentage of Enterobacteriaceae in duodenum decreased to 0.64%, the lesions in cecum and duodenum were alleviated, and the bacterial load in the jejunal lymph nodes, cecum and spleen were also significantly different with infected group (P < 0.001). CONCLUSIONS: The results showed that phage A221 significantly increased the daily weight gain of piglets, reduced the bacterial load of tissues and the intestinal lesions, achieved the same therapeutic effect as antibiotic Florfenicol. Taken together, oral microencapsulated phage A221 has a good therapeutic effect on bacterial diarrhea of weaned piglets, which provides guidance for the clinical application of phage therapy in the future.
Assuntos
Bacteriófagos , Infecções por Escherichia coli , Terapia por Fagos , Doenças dos Suínos , Animais , Suínos , Escherichia coli , Terapia por Fagos/veterinária , Infecções por Escherichia coli/terapia , Infecções por Escherichia coli/veterinária , Diarreia/terapia , Diarreia/veterinária , Antibacterianos/uso terapêutico , Peso Corporal , Doenças dos Suínos/terapiaRESUMO
Lactobacillus plantarum has recently been found to be a natural source feed additive bacteria with great advantages in food safety and animal welfare. Discovering novel strains with commercial application potentiation could benefit the local poultry industry, and in particular support Chinese farmers. In this study, we tested a recently isolated novel strain of Lactobacillus plantarum GX17 as a feed additive on the growth performance and intestinal barrier functions of 1-day-old Chinese yellow-feather chicks. As good as other commercial probiotics, feeding with Lactobacillus plantarum GX17 showed significant improvements in humoral immune responses and enhanced the immune effect after vaccination for either the Newcastle disease vaccine or the avian influenza vaccine. This study also found that feeding with Lactobacillus plantarum GX17 improved the feed-to-weight ratio and caused a significant increase of the villus length to crypt depth ratio. Furthermore, Lactobacillus plantarum GX17 significantly up-regulated the mRNA expression of CLDN, MUC2, and TLR2, all of which are jejunum-associated barrier genes, indicating an improvement of the intestinal barrier functions by enhancing the tight junction between epithelia cells. These results are comparable to the effects of feeding the commercial complex probiotics that improve the expression levels of CLDN, ocludin, MUC2, TLR2, and TLR4. In terms of maintaining intestinal health, commercial complex probiotics increased the relative abundance of Parabacteroides and Romboutsia, while Lactobacillus plantarum GX17 increased the relative abundance of Pseudoflavonifractor. Our data suggest that Lactobacillus plantarum GX17 could enhance the intestinal absorption of nutrients and therefore improve the growth performance of Chinese yellow-feather chicks. In conclusion, compared with the commercial complex probiotics, Lactobacillus plantarum GX17 has more positive effects on the growth performance and intestinal barrier function of yellow-feather chickens, and can be used as a feed additive.
Assuntos
Microbioma Gastrointestinal , Lactobacillus plantarum , Animais , Lactobacillus plantarum/fisiologia , Galinhas/microbiologia , Plumas , Receptor 2 Toll-LikeRESUMO
Antimicrobial photodynamic therapy (aPDT) is a non-pharmacological antimicrobial regimen based on light, photosensitizer and oxygen. It has become a potential method to inactivate multidrug-resistant bacteria. However, limited by the delivery of photosensitizer (PS) in biofilm, eradicating biofilm-associated infections by aPDT remains challenging. This study aimed to explore the feasibility of combining ultrasonic irradiation with aPDT to enhance the efficacy of aPDT against methicillin-resistant staphylococcus aureus (MRSA) biofilm. A cationic benzylidene cyclopentanone photosensitizer with much higher selectivity to bacterial cells than mammalian cells were applied at the concentration of 10⯵M. 532â¯nm laser (40â¯mW/cm2, 10â¯min) and 1â¯MHz ultrasound (500â¯mW/cm2, 10â¯min, simultaneously with aPDT) were employed against MRSA biofilms in vitro. In addition to combined with ultrasonic irradiation and aPDT, MRSA biofilms were treated with laser irradiation only, photosensitizer only, ultrasonic irradiation only, ultrasonic irradiation and photosensitizer, and aPDT respectively. The antibacterial efficacy was determined by XTT assay, and the penetration depth of PS in biofilm was observed using a photoluminescence spectrometer and a confocal laser scanning microscopy (CLSM). In addition, the viability of human dermal fibroblasts (WS-1 cells) after the same treatments mentioned above and the uptake of P3 by WS-1 cells after ultrasonic irradiation were detected by CCK-8 and CLSM in vitro. Results showed that the percent decrease in metabolic activity resulting from the USâ¯+â¯aPDT group (75.76%) was higher than the sum of the aPDT group (44.14%) and the US group (9.88%), suggesting synergistic effects. Meanwhile, the diffusion of PS in the biofilm of MRSA was significantly increased by 1â¯MHz ultrasonic irradiation. Ultrasonic irradiation neither induced the PS uptake by WS-1 cells nor reduced the viability of WS-1 cells. These results suggested that 1â¯MHz ultrasonic irradiation significantly enhanced the efficacy of aPDT against MRSA biofilm by increasing the penetration depth of PS. In addition, the antibacterial efficacy of aPDT can be enhanced by ultrasonic irradiation, the USâ¯+â¯aPDT treatment demonstrated encouraging in vivo antibacterial efficacy (1.73 log10 CFU/mL reduction). In conclusion, the combination of aPDT and 1â¯MHz ultrasound is a potential and promising strategy to eradicate biofilm-associated infections of MRSA.
Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Animais , Humanos , Fármacos Fotossensibilizantes/farmacologia , Ultrassom , Fotoquimioterapia/métodos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , MamíferosRESUMO
Port wine stain (PWS) is a congenital cutaneous capillary malformation composed of ecstatic vessels, while the microstructure of these vessels remains largely unknown. Optical coherence tomography angiography (OCTA) serves as a non-invasive, label-free and high-resolution tool to visualize the 3D tissue microvasculature. However, even as the 3D vessel images of PWS become readily accessible, quantitative analysis algorithms for their organization have mainly remained limited to analysis of 2D images. Especially, 3D orientations of vasculature in PWS have not yet been resolved at a voxel-wise basis. In this study, we employed the inverse signal-to-noise ratio (iSNR)-decorrelation (D) OCTA (ID-OCTA) to acquire 3D blood vessel images in vivo from PWS patients, and used the mean-subtraction method for de-shadowing to correct the tail artifacts. We developed algorithms which mapped blood vessels in spatial-angular hyperspace in a 3D context, and obtained orientation-derived metrics including directional variance and waviness for the characterization of vessel alignment and crimping level, respectively. Combining with thickness and local density measures, our method served as a multi-parametric analysis platform which covered a variety of morphological and organizational characteristics at a voxel-wise basis. We found that blood vessels were thicker, denser and less aligned in lesion skin in contrast to normal skin (symmetrical parts of skin lesions on the cheek), and complementary insights from these metrics led to a classification accuracy of â¼90% in identifying PWS. An improvement in sensitivity of 3D analysis was validated over 2D analysis. Our imaging and analysis system provides a clear picture of the microstructure of blood vessels within PWS tissues, which leads to a better understanding of this capillary malformation disease and facilitates improvements in diagnosis and treatment of PWS.
Assuntos
Mancha Vinho do Porto , Humanos , Mancha Vinho do Porto/diagnóstico por imagem , Mancha Vinho do Porto/patologia , Tomografia de Coerência Óptica/métodos , Capilares , AngiografiaRESUMO
Multi-aperture optical telescopes have been extensively studied owing to their high resolution, low cost, and light weight. The next generation of optical telescopes is predicted to be equipped with dozens or even hundreds of segmented lenses; therefore, it is necessary to optimize the arrangement of the lens array. This paper proposes a new structure called the Fermat spiral array (FSA) to replace the conventional hexagonal or ring array for the sub-aperture arrangement of a multi-aperture imaging system. The point spread function (PSF) and modulation transfer function (MTF) of the imaging system are compared in detail at single and multiple incident wavelengths. The FSA can effectively weaken the sidelobe intensity of the PSF, which is 12.8â dB lower on average than conventional ones with a single incident wavelength in the simulation and 4.45â dB lower in the experiment. A new MTF evaluation function is proposed to describe the mean level of MTF at mid-frequencies. The FSA can improve the MTF of the imaging system and weaken the ringing effect in the images. The imaging simulation indicates that FSA has superior imaging quality compared to conventional arrays, with a higher peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The imaging experiments also achieve a higher SSIM with the FSA, which agrees well with the simulation results. The proposed FSA multi-aperture will help improve the imaging performance of next-generation optical telescopes.
RESUMO
As the problem of bacterial resistance becomes serious day by day, bacteriophage as a potential antibiotic substitute attracts more and more researchers' interest. In this study, Escherichia phage Kayfunavirus CY1 was isolated from sewage samples of swine farms and identified by biological characteristics and genomic analysis. One-step growth curve showed that the latent period of phage CY1 was about 10 min, the outbreak period was about 40 min and the burst size was 35 PFU/cell. Analysis of the electron microscopy and whole-genome sequence showed that the phage should be classified as a member of the Autographiviridae family, Studiervirinae subfamily. Genomic analysis of phage CY1 (GenBank accession no. OM937123) revealed a genome size of 39,173 bp with an average GC content of 50.51% and 46 coding domain sequences (CDSs). Eight CDSs encoding proteins involved in the replication and regulation of phage DNA, 2 CDSs encoded lysis proteins, 14 CDSs encoded packing and morphogenesis proteins. Genomic and proteomic analysis identified no sequence that encoded for virulence factor, integration-related proteins or antibiotic resistance genes. In summary, morphological and genomics suggest that phage CY1 is more likely a novel Escherichia phage.
Assuntos
Bacteriófagos , Caudovirales , Suínos , Animais , Proteômica , Genoma Viral/genética , Genômica , Bacteriófagos/genética , Caudovirales/genética , Escherichia/genéticaRESUMO
Escherichia coli is a common conditional pathogen, for which antibiotic therapy is considered an effective treatment. The imprudent use of antibiotics has led to the increase of multiple-antibiotic-resistant E. coli species. With the incidence of antibiotic resistance reaching a crisis point, it is imperative to find alternative treatments for multidrug-resistant infections. Using phage for pathogen control is a promising treatment option to combat bacterial resistance. In this study, a novel virulent Podoviridae phage Kayfunavirus TM1 infecting Escherichia coli was isolated from pig farm sewage in Guangxi, China. The one-step growth curve with the optimal multiplicity of infection of 0.01 revealed a latent period of 10 min and a burst size of 50 plaque-forming units per cell. The stability test reveals that it is stable from 4 to 60 °C and pH from 3 to 11. The double-stranded DNA genome of phage Kayfunavirus TM1 is composed of 39,948 base pairs with a GC content of 50.03%.
Assuntos
Bacteriófagos , Suínos , Animais , Bacteriófagos/genética , Escherichia coli/genética , Genoma Viral , DNA Viral/genética , China , AntibacterianosRESUMO
Escherichia coli (E. coli) O157:H7 is one of the most important foodborne pathogens that causing severe foodborne diseases. With the development of foodborne diseases, there is an urgent need to seek new methods for early detection and monitoring of E. coli O157:H7. In this study, an electrochemical biosensor using phage EP01 as the recognition agent for detection of E. coli O157:H7 GXEC-N07 was established due to the specificity and high efficiency of phage EP01 in recognizing GXEC-N07. The biosensor was developed by depositing phages conjugated carboxyl graphene oxide (CFGO) and conductive carbon black (CB) onto the surface of glass carbon electrodes (GCEs). When detecting GXEC-N07 in the concentration range of 102 â¼ 107 CFU/mL, the biosensor showed good linearity with a low detection limit of 11.8 CFU/mL, and the whole progress was in less than 30 min. The biosensor was successfully applied to the quantitative detection of GXEC-N07 in fresh milk and raw pork. The recovery values ranged from 60.8 % to 114.2 %. The biosensor provides a rapid, specific, low cost, and label free tool for E. coli O157:H7 GXEC-N07 detection. It is expected to become a powerful method for the detection of bacteria that threatening food safety and public health security.
Assuntos
Bacteriófagos , Técnicas Biossensoriais , Escherichia coli O157 , Doenças Transmitidas por Alimentos , Humanos , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Técnicas Biossensoriais/métodos , Doenças Transmitidas por Alimentos/microbiologiaRESUMO
Escherichia coli (O78) is an avian pathogenic Escherichia coli (APEC). It can cause perihepatitis, pericarditis, septicemia and even systemic infections in the poultry industry. With the incidence of antibiotic resistance reaching a crisis point, it is important to find alternative treatments for multidrug-resistant infections. The use of phages to control pathogens is a promising therapeutic option for antibiotic replacement. In this study, we isolated a lytic phage called vB_EcoS_GN06 from sewage. It lysed APEC GXEC-N22. Transmission electron microscopy showed that the phage belongs to family Siphoviridae. Phage GN06 has a 107,237 bp linear double-stranded DNA genome with 39.2% GC content and 155 coding sequences. It belongs to the genus Tequintavirus, subfamily Markadamsvirinae. The multiplicity of infection of 0.01 and the one-step growth showed that the latent time is 60 min and the burst size is 434 PFU/cell. Temperature and pH stability tests showed that phage GN06 was stable in the range of 4 °C-60 °C and pH 5-9. GN06 showed significant inhibition of APEC both within the liquid medium and in biofilm formation. These results suggest that phage GN06 has the potential to control bacterial pathogens. Thus, GN06 has the potential to be a new potential candidate for phage therapy.
RESUMO
In contrast to dexamethasone, the clinical efficacy of methylprednisolone (MP) remains controversial, and a systems biology study on its mechanism is lacking. In this study, a total of 38 severe COVID-19 patients were included. The demographics, clinical characteristics, and severity biomarkers including C-reactive protein (CRP), d-dimer, albumin, and Krebs von den Lungen 6 of patients receiving MP (n=26, 40 mg or 80 mg daily for 3-5 days) and supportive therapy (n=12) were compared. Longitudinal measurements of 92 cytokines in MP group from admission to over six months after discharge were performed by multiplex Proximity Extension Assay. The results showed that demographics, baseline clinical characteristics were similar in MP and non-MP groups. No death occurred and the hospital stays between the two groups were similar. Kinetics studies showed that MP was not better than supportive therapy at improving the four severity biomarkers. Cytokines in MP group were characterized by five clusters according to their baseline levels and responses to MP. The immunological feature of severe COVID-19 could be defined by the "core signature" cytokines in cluster 2: MCP-3, IL-6, IFN-γ, and CXCL10, which strongly correlated with each other and CRP, and are involved in cytokine release storm. The "core signature" cytokines were significantly upregulated at baseline and remained markedly elevated after MP treatment. Our work showed a short course of MP therapy could not rapidly improve the immune disorders among severe COVID-19 patients or clinical outcomes, also confirmed "core signature" cytokines, as severity biomarkers similar to CRP, could be applied to evaluate clinical treatment effect.
Assuntos
Tratamento Farmacológico da COVID-19 , Metilprednisolona , Biomarcadores , Proteína C-Reativa/análise , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas , Humanos , Cinética , Metilprednisolona/uso terapêutico , SARS-CoV-2RESUMO
The rapid increase of antibiotic resistance in pathogenic microorganisms has become one of the most severe threats to human health. Antimicrobial photodynamic therapy (aPDT), a light-based regimen, has offered a compelling nonpharmacological alternative to conventional antibiotics. The activity of aPDT is based on cytotoxic effect of reactive oxygen species (ROS), which are generated through the photosensitized reaction between photon, oxygen and photosensitizer. However, limited by the penetration of light and photosensitizers in human tissues and/or the infiltration of oxygen and photosensitizers in biofilms, the eradication of deeply located or biofilm-associated infections by aPDT remains challenging. Ultrasound irradiation bears a deeper penetration in human tissues than light and, sequentially, can promote drug delivery through cavitation effect. As such, the combination of ultrasound and aPDT represents a potent antimicrobial strategy. In this review, we summarized the recent progresses in the area of the combination therapy using ultrasound and aPDT, and discussed the potential mechanisms underlying enhanced antimicrobial effect by this combination therapy. The future research directions are also highlighted.
Assuntos
Anti-Infecciosos , Fotoquimioterapia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Biofilmes , Humanos , Oxigênio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , UltrassomRESUMO
BACKGROUND: Photodynamic therapy (PDT) has been approved for the clinical treatment of cancers. Photosensitizer (PS) is a crucial element of PDT. In the current study, in vitro and in vivo evaluation of a chlorin-based photosensitizer KAE® was performed. METHODS: The physicochemical characteristics of KAE® were compared with chlorin e6. The intracellular distribution of KAE® in HeLa cells was observed by laser scanning confocal microscopy. Reactive oxygen species (ROS) generation was detected through a 2', 7-dichlorodihydrofluorescein diacetate probe. The pharmacokinetics of KAE® was studied in mice. The photodynamic activities of KAE® and porphyrin based PSs were compared both in vitro and in vivo. The biosafety of KAE® in mice was evaluated by pathological section observation, blood routine examination and biochemistry assays. RESULTS: KAE® was readily dissolved in an aqueous solvent in a clinically acceptable concentration and showed a strong absorption at around 660 nm. Most of KAE® was located in the mitochondria of the tumor cells. Compared with hematoporphyrin derivative and 5-aminolevulinic acid, KAE® displayed a higher efficiency in cell killing. Furthermore, it could be completely eliminated from mouse body in 2 days. KAE® had no toxicity to mice under the tested dosage. CONCLUSIONS: Our results suggested that KAE® is an effective and safe PS for PDT in cancer therapy and has a promising prospect for clinical application.
Assuntos
Neoplasias , Fotoquimioterapia , Porfirinas , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos FotossensibilizantesRESUMO
Circadian disruption induced by rotating light cycles has been linked to metabolic disorders. However, how the interaction of light intensity and light cycle affects metabolism under different diets remains to be explored. Eighty mice were first randomly stratified into the low-fat diet (LFD, n = 40) or high-fat diet (HFD, n = 40) groups. Each group was further randomly subdivided into four groups (n = 8-12 per group) in terms of different light intensities [lower (LI, 78 lx) or higher intensity (HI, 169 lx)] and light cycles [12-h light:12-h dark cycle or circadian-disrupting (CD) light cycle consisting of repeated 6-h light phase advancement]. Body weight was measured weekly. At the end of the 16-wk experiment, mice were euthanized for serum and pathological analysis. Glucose and insulin tolerance tests were performed during the last 2 wk. The CD cycle increased body weight gain, adipocyte area, glucose intolerance, and insulin resistance of LFD as well as HFD mice under HI but not LI condition. Moreover, the serum and hepatic triglyceride levels increased with LFD-HI treatment, regardless of light cycle. In addition, the CD cycle improved lipid and glucose metabolism under HFD-LI condition. In summary, the detrimental effects of the CD cycle on metabolism were alleviated under LI condition, especially in HFD mice. These results indicate that modulating light intensity is a potential strategy to prevent the negative metabolic consequences associated with jet lag or shift work.NEW & NOTEWORTHY Glucose and lipid homeostasis is altered by the CD cycles in a light-intensity-dependent manner. Lower-intensity light reverses the negative metabolic effects of the CD cycles, especially under HFD feeding. The interaction of light intensity and light cycle on metabolism is independent of energy intake and eating pattern. Glucose metabolic disorders caused by rotating light cycles occur along with compensatory ß-cell mass expansion.
Assuntos
Glicemia/metabolismo , Colesterol/sangue , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Luz , Transdução de Sinais/efeitos da radiação , Triglicerídeos/sangue , Animais , Glicemia/análise , Ingestão de Alimentos/efeitos da radiação , Intolerância à Glucose/sangue , Teste de Tolerância a Glucose , Insulina/sangue , Resistência à Insulina/efeitos da radiação , Fígado/metabolismo , Locomoção/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aumento de Peso/efeitos da radiaçãoRESUMO
The beam quality of coherent beam combing (CBC) is significantly affected by the beam array schemes, which are regular hexagon arrays in most research. Here, we propose a bio-inspired Fermat spiral array (FSA) for large-array CBC, for the first time to our knowledge. The far-field distribution and beam quality of CBC with various designed FSAs was investigated numerically and experimentally; the simulated and experimental results agreed with each other. The power in the bucket (PIB) increased with the central space density of the FSA, accompanying by the weakening of the far-field sidelobes. In addition, for the FSA with constant space density, the PIB increased, and sidelobes weakened with the increase of the array filling factor. The FSA could effectively improve the PIB and weaken the sidelobe of the CBC far field by the aperiodic and nonuniform space density arrangement, compared to the regular arrays. These results provide a new approach for the beam arrangement of large-array CBC.