Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5996, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803014

RESUMO

Associative learning is crucial for adapting to environmental changes. Interactions among neuronal populations involving the dorso-medial prefrontal cortex (dmPFC) are proposed to regulate associative learning, but how these neuronal populations store and process information about the association remains unclear. Here we developed a pipeline for longitudinal two-photon imaging and computational dissection of neural population activities in male mouse dmPFC during fear-conditioning procedures, enabling us to detect learning-dependent changes in the dmPFC network topology. Using regularized regression methods and graphical modeling, we found that fear conditioning drove dmPFC reorganization to generate a neuronal ensemble encoding conditioned responses (CR) characterized by enhanced internal coactivity, functional connectivity, and association with conditioned stimuli (CS). Importantly, neurons strongly responding to unconditioned stimuli during conditioning subsequently became hubs of this novel associative network for the CS-to-CR transformation. Altogether, we demonstrate learning-dependent dynamic modulation of population coding structured on the activity-dependent formation of the hub network within the dmPFC.


Assuntos
Condicionamento Clássico , Aprendizagem , Masculino , Camundongos , Animais , Condicionamento Clássico/fisiologia , Aprendizagem/fisiologia , Córtex Pré-Frontal/fisiologia , Medo/fisiologia , Neurônios/fisiologia , Aprendizagem por Associação
2.
J Neurosci ; 43(43): 7130-7148, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37699714

RESUMO

The primary motor cortex (M1) and the dorsal striatum play a critical role in motor learning and the retention of learned behaviors. Motor representations of corticostriatal ensembles emerge during motor learning. In the coordinated reorganization of M1 and the dorsal striatum for motor learning, layer 5a (L5a) which connects M1 to the ipsilateral and contralateral dorsal striatum, should be a key layer. Although M1 L5a neurons represent movement-related activity in the late stage of learning, it is unclear whether the activity is retained as a memory engram. Here, using Tlx3-Cre male transgenic mice, we conducted two-photon calcium imaging of striatum-projecting L5a intratelencephalic (IT) neurons in forelimb M1 during late sessions of a self-initiated lever-pull task and in sessions after 6 d of nontraining following the late sessions. We found that trained male animals exhibited stable motor performance before and after the nontraining days. At the same time, we found that M1 L5a IT neurons strongly represented the well-learned forelimb movement but not uninstructed orofacial movements. A subset of M1 L5a IT neurons consistently coded the well-learned forelimb movement before and after the nontraining days. Inactivation of M1 IT neurons after learning impaired task performance when the lever was made heavier or when the target range of the pull distance was narrowed. These results suggest that a subset of M1 L5a IT neurons continuously represent skilled movement after learning and serve to fine-tune the kinematics of well-learned movement.SIGNIFICANCE STATEMENT Motor memory persists even when it is not used for a while. IT neurons in L5a of the M1 gradually come to represent skilled forelimb movements during motor learning. However, it remains to be determined whether these changes persist over a long period and how these neurons contribute to skilled movements. Here, we show that a subset of M1 L5a IT neurons retain information for skilled forelimb movements even after nontraining days. Furthermore, suppressing the activity of these neurons during skilled forelimb movements impaired behavioral stability and adaptability. Our results suggest the importance of M1 L5a IT neurons for tuning skilled forelimb movements over a long period.


Assuntos
Córtex Motor , Camundongos , Animais , Masculino , Córtex Motor/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Aprendizagem/fisiologia , Membro Anterior/fisiologia
3.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-34965927

RESUMO

Parvalbumin (PV)-producing neurons are the largest subpopulation of cortical GABAergic interneurons, which mediate lateral, feedforward, and feedback inhibition in local circuits and modulate the activity of pyramidal neurons. Clarifying the specific connectivity between pyramidal and PV neurons is essential for understanding the role of PV neurons in local circuits. In the present study, we visualized somas and dendrites of PV neurons using transgenic mice in which PV neurons specifically express membrane-targeted GFP, and intracellularly labeled local axons of 26 pyramidal neurons in layers 2-6 in acute slices of the motor-associated cortex from transgenic mice. We mapped morphologically distribution of inputs from a pyramidal neuron to PV neurons based on contact sites (appositions) between the axons from an intracellularly filled pyramidal neuron and the dendrites of PV neurons. Layer 6 corticothalamic (CT)-like pyramidal neurons formed appositions to PV neurons at a significantly higher rate than other pyramidal neurons. The percentage of apposed varicosities to all the labeled varicosities of layer 6 CT-like neurons was 28%, and that of the other pyramidal neurons was 12-19%. Layer 6 CT-like neurons preferentially formed appositions with PV neurons in layers 5b-6, while other pyramidal neurons uniformly formed appositions with PV neurons in all layers. Furthermore, both layer 6 CT-like and corticocortical-like neurons more frequently formed compound appositions, where two or more appositions were located on a dendritic branch, than other pyramidal neurons. Layer 6 CT neurons may contribute to intracortical information processing through preferential connections with PV neurons in layers 5b-6.


Assuntos
Dendritos , Parvalbuminas , Animais , Dendritos/fisiologia , Interneurônios/fisiologia , Camundongos , Camundongos Transgênicos , Células Piramidais/fisiologia
4.
Sci Rep ; 11(1): 17021, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426639

RESUMO

In vivo calcium imaging with genetically encoded indicators has recently been applied to macaque brains to monitor neural activities from a large population of cells simultaneously. Microendoscopic calcium imaging combined with implantable gradient index lenses captures neural activities from deep brain areas with a compact and convenient setup; however, this has been limited to rodents and marmosets. Here, we developed miniature fluorescent microscopy to image neural activities from the primary visual cortex of behaving macaques. We found tens of clear fluorescent signals from three of the six brain hemispheres. A subset of these neurons showed clear retinotopy and orientation tuning. Moreover, we successfully decoded the stimulus orientation and tracked the cells across days. These results indicate that microendoscopic calcium imaging is feasible and reasonable for investigating neural circuits in the macaque brain by monitoring fluorescent signals from a large number of neurons.


Assuntos
Comportamento Animal/fisiologia , Cálcio/metabolismo , Endoscopia , Imageamento Tridimensional , Córtex Visual/diagnóstico por imagem , Animais , Fixação Ocular/fisiologia , Fluorescência , Vetores Genéticos/administração & dosagem , Injeções , Lentes Intraoculares , Macaca , Masculino , Neurônios/fisiologia , Orientação , Estimulação Luminosa , Córtex Visual/virologia , Campos Visuais/fisiologia
5.
PLoS One ; 15(6): e0234930, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32559228

RESUMO

Synaptic plasticity is the cellular basis of learning and memory. When animals learn a novel motor skill, synaptic modifications are induced in the primary motor cortex (M1), and new postsynaptic dendritic spines relevant to motor memory are formed in the early stage of learning. However, it is poorly understood how presynaptic axonal boutons are formed, eliminated, and maintained during motor learning, and whether long-range corticocortical and thalamocortical axonal boutons show distinct structural changes during learning. In this study, we conducted two-photon imaging of presynaptic boutons of long-range axons in layer 1 (L1) of the mouse M1 during the 7-day learning of an accelerating rotarod task. The training-period-averaged rate of formation of boutons on axons projecting from the secondary motor cortical area increased, while the average rate of elimination of those from the motor thalamus (thalamic boutons) decreased. In particular, the elimination rate of thalamic boutons during days 4-7 was lower than that in untrained mice, and the fraction of pre-existing thalamic boutons that survived until day 7 was higher than that in untrained mice. Our results suggest that the late stabilization of thalamic boutons in M1 contributes to motor skill learning.


Assuntos
Córtex Cerebral/fisiologia , Aprendizagem , Movimento , Terminações Pré-Sinápticas/fisiologia , Tálamo/fisiologia , Animais , Córtex Cerebral/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Teste de Desempenho do Rota-Rod , Tálamo/citologia
6.
Glia ; 68(1): 193-210, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465122

RESUMO

Myelination increases the conduction velocity in long-range axons and is prerequisite for many brain functions. Impaired myelin regulation or impairment of myelin itself is frequently associated with deficits in learning and cognition in neurological and psychiatric disorders. However, it has not been revealed what perturbation of neural activity induced by myelin impairment causes learning deficits. Here, we measured neural activity in the motor cortex during motor learning in transgenic mice with a subtle impairment of their myelin. This deficit in myelin impaired motor learning, and was accompanied by a decrease in the amplitude of movement-related activity and an increase in the frequency of spontaneous activity. Thalamocortical axons showed variability in axonal conduction with a large spread in the timing of postsynaptic cortical responses. Repetitive pairing of forelimb movements with optogenetic stimulation of thalamocortical axon terminals restored motor learning. Thus, myelin regulation helps to maintain the synchrony of cortical spike-time arrivals through long-range axons, facilitating the propagation of the information required for learning. Our results revealed the pathological neuronal circuit activity with impaired myelin and suggest the possibility that pairing of noninvasive brain stimulation with relevant behaviors may ameliorate cognitive and behavioral abnormalities in diseases with impaired myelination.


Assuntos
Potenciais de Ação/fisiologia , Aprendizagem/fisiologia , Córtex Motor/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Neurônios/metabolismo , Desempenho Psicomotor/fisiologia , Animais , Masculino , Camundongos , Camundongos Transgênicos , Córtex Motor/química , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/química , Neurônios/química , Optogenética/métodos
7.
Neuron ; 100(1): 244-258.e12, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30174116

RESUMO

The thalamus is the hub through which neural signals are transmitted from the basal ganglia and cerebellum to the neocortex. However, thalamocortical axonal activity during motor learning remains largely undescribed. We conducted two-photon calcium imaging of thalamocortical axonal activity in the motor cortex of mice learning a self-initiated lever-pull task. Layer 1 (L1) axons came to exhibit activity at lever-pull initiation and termination, while layer 3 (L3) axons did so at lever-pull initiation. L1 population activity had a sequence structure related to both lever-pull duration and reproducibility. Stimulation of the substantia nigra pars reticulata activated more L1 than L3 axons, whereas deep cerebellar nuclei (DCN) stimulation did the opposite. Lesions to either the dorsal striatum or the DCN impaired motor learning and disrupted temporal dynamics in both layers. Thus, layer-specific thalamocortical signals evolve with the progression of learning, which requires both the basal ganglia and cerebellar activities.


Assuntos
Axônios/fisiologia , Encéfalo/fisiologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Animais , Córtex Cerebral/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/fisiologia , Tálamo/fisiologia
8.
Nat Commun ; 9(1): 1879, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29760466

RESUMO

Two-photon imaging in behaving animals has revealed neuronal activities related to behavioral and cognitive function at single-cell resolution. However, marmosets have posed a challenge due to limited success in training on motor tasks. Here we report the development of protocols to train head-fixed common marmosets to perform upper-limb movement tasks and simultaneously perform two-photon imaging. After 2-5 months of training sessions, head-fixed marmosets can control a manipulandum to move a cursor to a target on a screen. We conduct two-photon calcium imaging of layer 2/3 neurons in the motor cortex during this motor task performance, and detect task-relevant activity from multiple neurons at cellular and subcellular resolutions. In a two-target reaching task, some neurons show direction-selective activity over the training days. In a short-term force-field adaptation task, some neurons change their activity when the force field is on. Two-photon calcium imaging in behaving marmosets may become a fundamental technique for determining the spatial organization of the cortical dynamics underlying action and cognition.


Assuntos
Cálcio/fisiologia , Cognição/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Extremidade Superior/fisiologia , Potenciais de Ação/fisiologia , Animais , Mapeamento Encefálico , Callithrix , Imobilização , Masculino , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Molecular , Córtex Motor/anatomia & histologia , Neurônios/citologia , Neurônios/fisiologia , Análise de Célula Única , Análise e Desempenho de Tarefas
9.
J Comp Neurol ; 525(18): 3821-3839, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28863230

RESUMO

The rodent orbitofrontal cortex is involved in a variety of cognitive and behavioral functions that require thalamic input to be successfully expressed. Although the thalamic nucleus submedius (Sm) is a major source of afferents to the orbitofrontal cortex, thalamocortical projection from the Sm has not been fully elucidated. In the present study, we first divided the rat Sm into dorsal and ventral parts according to the distribution of vesicular glutamate transporter 2-immunoreactive varicosities, which were somatosensory afferents from the brain stem. Subsequently we investigated dendritic and axonal arborizations of individual dorsal and ventral Sm neurons by visualizing the processes with Sindbis virus vectors expressing membrane-targeted fluorescent proteins. The number of dendritic processes of ventral Sm neurons was greater than that of dorsal Sm neurons. In the cerebral cortex, all the reconstructed Sm neurons sent axons primarily to layers 2-5. Interestingly, dorsal Sm neurons formed a single axon arbor exclusively within the ventrolateral orbital area, whereas ventral Sm neurons made two axon arbors in the lateral orbital and ventral orbital areas simultaneously. The spread of each axon arbor was 500-1000 µm in diameter in the direction tangential to the cortical surface. These results indicate that the dorsal and ventral Sm comprise two distinct thalamocortical pathways. The dorsal Sm pathway relay somatosensory information to the ventrolateral orbital area and may be involved in emotional and aversive aspects of nociceptive information processing, whereas the ventral Sm pathway seems to co-activate distant orbitofrontal cortical areas, and may link their functions under certain circumstances.


Assuntos
Vias Neurais/fisiologia , Neurônios/fisiologia , Núcleos Posteriores do Tálamo/citologia , Córtex Pré-Frontal/citologia , Núcleos Ventrais do Tálamo/citologia , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Toxina da Cólera/metabolismo , Dextranos/metabolismo , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Técnicas de Rastreamento Neuroanatômico , Ratos , Ratos Sprague-Dawley , Sindbis virus/genética , Transdução Genética
10.
J Comp Neurol ; 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28833113

RESUMO

The rodent orbitofrontal cortex is involved in a variety of cognitive and behavioral functions that require thalamic input to be successfully expressed. Although the thalamic nucleus submedius (Sm) is a major source of afferents to the orbitofrontal cortex, thalamocortical projection from the Sm has not been fully elucidated. In the present study, we first divided the rat Sm into dorsal and ventral parts according to the distribution of vesicular glutamate transporter 2-immunoreactive varicosities, which were somatosensory afferents from the brain stem. Subsequently we investigated dendritic and axonal arborizations of individual dorsal and ventral Sm neurons by visualizing the processes with Sindbis virus vectors expressing membrane-targeted fluorescent proteins. The number of dendritic processes of ventral Sm neurons was greater than that of dorsal Sm neurons. In the cerebral cortex, all the reconstructed Sm neurons sent axons primarily to layers 2-5. Interestingly, dorsal Sm neurons formed a single axon arbor exclusively within the ventrolateral orbital area, whereas ventral Sm neurons made two axon arbors in the lateral orbital and ventral orbital areas simultaneously. The spread of each axon arbor was 500-1000 µm in diameter in the direction tangential to the cortical surface. These results indicate that the dorsal and ventral Sm comprise two distinct thalamocortical pathways. The dorsal Sm pathway relay somatosensory information to the ventrolateral orbital area and may be involved in emotional and aversive aspects of nociceptive information processing, whereas the ventral Sm pathway seems to co-activate distant orbitofrontal cortical areas, and may link their functions under certain circumstances. This article is protected by copyright. All rights reserved.

11.
J Comp Neurol ; 525(1): 166-185, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27275581

RESUMO

The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Neurônios/citologia , Córtex Pré-Frontal/citologia , Tálamo/citologia , Animais , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas Imunoenzimáticas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Vias Neurais/citologia , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos Sprague-Dawley , Sindbis virus/genética , Tálamo/metabolismo , Proteína Vermelha Fluorescente
12.
Cereb Cortex ; 25(1): 221-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23968832

RESUMO

Not only inhibitory afferent-dominant zone (IZ) of the ventral anterior-ventral lateral thalamic complex (VA-VL) but also the ventral medial nucleus (VM) is known to receive strong inputs from the basal ganglia and send axons to motor areas. We previously reported differences in axonal arborization between IZ neurons and the other VA-VL neurons in rats by single-neuron tracing with viral vectors. In the present study, the axonal arborization of single VM neurons was visualized by the same method, and compared with that of IZ neurons. VM neurons formed fewer axon collaterals in the striatum, but sent axon fibers more widely and more preferentially (79% of fibers) to layer 1 of cortical areas than IZ neurons. Furthermore, the VM seemed to contain at least 2 types of neurons; a major population of VM neurons sent axon fibers principally to motor-associated areas as VA-VL neurons did, and the other population projected mainly to orbital or cingulate areas. Although both VM and IZ neurons receive strong basal ganglia inputs, these results suggest that VM neurons, at a single neuron level, innervate the apical dendrites of cortical pyramidal neurons more intensely and more widely than IZ neurons.


Assuntos
Córtex Cerebral/citologia , Neurônios/citologia , Núcleos Ventrais do Tálamo/citologia , Vias Aferentes/citologia , Animais , Axônios/ultraestrutura , Dendritos/ultraestrutura , Masculino , Ratos , Ratos Sprague-Dawley
13.
Nat Neurosci ; 17(7): 987-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880217

RESUMO

The primary motor cortex (M1) possesses two intermediate layers upstream of the motor-output layer: layer 2/3 (L2/3) and layer 5a (L5a). Although repetitive training often improves motor performance and movement coding by M1 neuronal ensembles, it is unclear how neuronal activities in L2/3 and L5a are reorganized during motor task learning. We conducted two-photon calcium imaging in mouse M1 during 14 training sessions of a self-initiated lever-pull task. In L2/3, the accuracy of neuronal ensemble prediction of lever trajectory remained unchanged globally, with a subset of individual neurons retaining high prediction accuracy throughout the training period. However, in L5a, the ensemble prediction accuracy steadily improved, and one-third of neurons, including subcortical projection neurons, evolved to contribute substantially to ensemble prediction in the late stage of learning. The L2/3 network may represent coordination of signals from other areas throughout learning, whereas L5a may participate in the evolving network representing well-learned movements.


Assuntos
Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora , Animais , Condicionamento Operante , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Dependovirus/genética , Vias Eferentes/fisiologia , Membro Anterior/inervação , Membro Anterior/fisiologia , Vetores Genéticos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Neuroimagem , Neurônios/fisiologia , Técnicas de Patch-Clamp , Desempenho Psicomotor , Recompensa
14.
Artigo em Inglês | MEDLINE | ID: mdl-23554588

RESUMO

Interactions between distinct motor cortical areas are essential for coordinated motor behaviors. In rodents, the motor cortical forelimb areas are divided into at least two distinct areas: the rostral forelimb area (RFA) and the caudal forelimb area (CFA). The RFA is thought to be an equivalent of the premotor cortex (PM) in primates, whereas the CFA is believed to be an equivalent of the primary motor cortex. Although reciprocal connections between the RFA and the CFA have been anatomically identified in rats, it is unknown whether there are functional connections between these areas that can induce postsynaptic spikes. In this study, we used an in vivo Channelrhodopsin-2 (ChR2) photostimulation method to trace the functional connections between the mouse RFA and CFA. Simultaneous electrical recordings were utilized to detect spiking activities induced by synaptic inputs originating from photostimulated areas. This method, in combination with anatomical tracing, demonstrated that the RFA receives strong functional projections from layer 2/3 and/or layer 5a, but not from layer 5b (L5b), of the CFA. Further, the CFA receives strong projections from L5b neurons of the RFA. The onset latency of electrical responses evoked in remote areas upon photostimulation of the other areas was approximately 10 ms, which is consistent with the synaptic connectivity between these areas. Our results suggest that neuronal activities in the RFA and the CFA during movements are formed through asymmetric reciprocal connections.


Assuntos
Potenciais de Ação/fisiologia , Córtex Motor/fisiologia , Optogenética/métodos , Estimulação Luminosa/métodos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Motor/citologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Distribuição Aleatória
15.
Cereb Cortex ; 22(12): 2840-57, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22190433

RESUMO

The rostral sector of the posterior thalamic nuclei (POm) is, together with the ventral posterior nuclei (VP), involved in somatosensory information processing in rodents. The POm receives inputs from the spinal cord and trigeminal nuclei and projects to the primary somatosensory (S1) cortex and other cortical areas. Although thalamocortical axons of single VP neurons are well known to innervate layer (L) 4 of the S1 cortex with distinct columnar organization, those of POm neurons have not been elucidated yet. In the present study, we investigated complete axonal and dendritic arborizations of single POm neurons in rats by visualizing the processes with Sindbis viruses expressing membrane-targeted fluorescent protein. When we divided the POm into anterior and posterior parts according to calbindin immunoreactivity, dendrites of posterior POm neurons were wider but less numerous than those of anterior neurons. More interestingly, axon fibers of anterior POm neurons were preferentially distributed in L5 of the S1 cortex, whereas those of posterior neurons were principally spread in L1 with wider and sparser arborization than those of anterior neurons. These results suggest that the POm is functionally segregated into anterior and posterior parts and that the 2 parts may play different roles in somatosensory information processing.


Assuntos
Axônios/ultraestrutura , Córtex Cerebral/ultraestrutura , Vias Neurais/ultraestrutura , Núcleos Talâmicos/ultraestrutura , Animais , Vetores Genéticos/genética , Masculino , Ratos , Ratos Sprague-Dawley , Sindbis virus/fisiologia , Transfecção
16.
J Neurosci ; 31(50): 18223-36, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22171028

RESUMO

Corticothalamic projection neurons in the cerebral cortex constitute an important component of the thalamocortical reciprocal circuit, an essential input/output organization for cortical information processing. However, the spatial organization of local excitatory connections to corticothalamic neurons is only partially understood. In the present study, we first developed an adenovirus vector expressing somatodendritic membrane-targeted green fluorescent protein. After injection of the adenovirus vector into the ventrobasal thalamic complex, a band of layer (L) 6 corticothalamic neurons in the rat barrel cortex were retrogradely labeled. In addition to their cell bodies, fine dendritic spines of corticothalamic neurons were well visualized without the labeling of their axon collaterals or thalamocortical axons. In cortical slices containing retrogradely labeled L6 corticothalamic neurons, we intracellularly stained single pyramidal/spiny neurons of L2-6. We examined the spatial distribution of contact sites between the local axon collaterals of each pyramidal neuron and the dendrites of corticothalamic neurons. We found that corticothalamic neurons received strong and focused connections from L4 neurons just above them, and that the most numerous nearby and distant sources of local excitatory connections to corticothalamic neurons were corticothalamic neurons themselves and L6 putative corticocortical neurons, respectively. These results suggest that L4 neurons may serve as an important source of local excitatory inputs in shaping the cortical modulation of thalamic activity.


Assuntos
Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Animais , Axônios/fisiologia , Masculino , Vias Neurais/citologia , Vias Neurais/fisiologia , Marcadores do Trato Nervoso , Neurônios/citologia , Ratos , Ratos Wistar , Córtex Somatossensorial/citologia , Tálamo/citologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-21994491

RESUMO

In the local circuit of the cerebral cortex, GABAergic inhibitory interneurons are considered to work in collaboration with excitatory neurons. Although many interneuron subgroups have been described in the cortex, local inhibitory connections of each interneuron subgroup are only partially understood with respect to the functional neuron groups that receive these inhibitory connections. In the present study, we morphologically examined local inhibitory inputs to corticospinal neurons (CSNs) in motor areas using transgenic rats in which GABAergic neurons expressed fluorescent protein Venus. By analysis of biocytin-filled axons obtained with whole-cell recording/staining in cortical slices, we classified fast-spiking (FS) neurons in layer (L) 5 into two types, FS1 and FS2, by their high and low densities of axonal arborization, respectively. We then investigated the connections of FS1, FS2, somatostatin (SOM)-immunopositive, and other (non-FS/non-SOM) interneurons to CSNs that were retrogradely labeled in motor areas. When close appositions between the axon boutons of the intracellularly labeled interneurons and the somata/dendrites of the retrogradely labeled CSNs were examined electron-microscopically, 74% of these appositions made symmetric synaptic contacts. The axon boutons of single FS1 neurons were two- to fourfold more frequent in appositions to the somata/dendrites of CSNs than those of FS2, SOM, and non-FS/non-SOM neurons. Axosomatic appositions were most frequently formed with axon boutons of FS1 and FS2 neurons (approximately 30%) and least frequently formed with those of SOM neurons (7%). In contrast, SOM neurons most extensively sent axon boutons to the apical dendrites of CSNs. These results might suggest that motor outputs are controlled differentially by the subgroups of L5 GABAergic interneurons in cortical motor areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA