Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 16(1): 182, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012750

RESUMO

Xylo-oligosaccharides (XOS) are considered as a promising type of prebiotics that can be used in foods, feeds, and healthcare products. Xylanases play a key role in the production of XOS from xylan. In this study, we conducted a metagenomic analysis of the fecal microbiota from dairy cows fed with different types of fodders. Despite the diversity in their diets, the main phyla observed in all fecal microbiota were Firmicutes and Bacteroidetes. At the genus level, one group of dairy cows that were fed probiotic fermented herbal mixture-containing fodders displayed decreased abundance of Methanobrevibacter and increased growth of beneficial Akkermansia bacteria. Additionally, this group exhibited a high microbial richness and diversity. Through our analysis, we obtained a comprehensive dataset comprising over 280,000 carbohydrate-active enzyme genes. Among these, we identified a total of 163 potential xylanase genes and subsequently expressed 34 of them in Escherichia coli. Out of the 34 expressed genes, two alkaline xylanases with excellent temperature stability and pH tolerance were obtained. Notably, CDW-xyl-8 exhibited xylanase activity of 96.1 ± 7.5 U/mg protein, with an optimal working temperature of 55 â„ƒ and optimal pH of 8.0. CDW-xyl-16 displayed an activity of 427.3 ± 9.1 U/mg protein with an optimal pH of 8.5 and an optimal temperature at 40 â„ƒ. Bioinformatic analyses and structural modeling suggest that CDW-xyl-8 belongs to GH10 family xylanase, and CDW-xyl-16 is a GH11 family xylanase. Both enzymes have the ability to hydrolyze beechwood xylan and produce XOS. In conclusion, this metagenomic study provides valuable insights into the fecal microbiota composition of dairy cows fed different fodder types, revealing main microbial groups and demonstrating the abundance of xylanases. Furthermore, the characterization of two novel xylanases highlights their potential application in XOS production.

2.
Molecules ; 28(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894651

RESUMO

Epimedium is a classical Chinese herbal medicine, which has been used extensively to treat various diseases, such as sexual dysfunction, osteoporosis, cancer, rheumatoid arthritis, and brain diseases. Flavonoids, such as icariin, baohuoside I, icaritin, and epimedin C, are the main active ingredients with diverse pharmacological activities. Currently, most Epimedium flavonoids are extracted from Epimedium plants, but this method cannot meet the increasing market demand. Biotransformation strategies promised huge potential for increasing the contents of high-value Epimedium flavonoids, which would promote the full use of the Epimedium herb. Complete biosynthesis of major Epimedium flavonoids by microbial cell factories would enable industrial-scale production of Epimedium flavonoids. This review summarizes the structures, pharmacological activities, and biosynthesis pathways in the Epimedium plant, as well as the extraction methods of major Epimedium flavonoids, and advancements in the biotransformation and complete microbial synthesis of Epimedium flavonoids, which would provide valuable insights for future studies on Epimedium herb usage and the production of Epimedium flavonoids.


Assuntos
Medicamentos de Ervas Chinesas , Epimedium , Osteoporose , Epimedium/química , Biotransformação , Medicamentos de Ervas Chinesas/uso terapêutico , Flavonoides/química , Osteoporose/tratamento farmacológico
3.
Mater Sci Eng C Mater Biol Appl ; 128: 112293, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474844

RESUMO

Due to increased requirements for precision cancer treatment, cancer chemotherapy and combination therapies have gradually developed in the direction of diagnosis and treatment integration. In this study, a non-toxic nano carrier that demonstrates integrated MRI signal enhancing performance, as well as better chemotherapy and photothermal conversion performance, was prepared and characterized. Furthermore, the carrier was used to construct an integrated system of tumor diagnosis and treatment. Our in vitro studies showed that this system has a considerable inhibition effect on tumor cells during the treatment of chemotherapy when combined with PTT, and in vivo studies showed that the system could improve the MRI signal of the tumor site with application of a safe dosage. Thus, this system based on NGO/USPIO has the potential to be a multi-functional nano drug delivery system integrating diagnosis and treatment benefits and applications that are worthy of further research.


Assuntos
Grafite , Nanopartículas de Magnetita , Neoplasias , Dextranos , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Óxidos
4.
J Biomater Appl ; 35(1): 15-27, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32202183

RESUMO

In this study, a transferrin/folic acid double-targeting graphene oxide drug delivery system loaded with doxorubicin was designed. Graphene oxide was prepared by ultrasound improved Hummers method and was modified with Pluronic F68, folic acid, and transferrin to decrease its toxicity and to allow dual-targeting. The results show that the double target drug delivery system (TFGP*DOX) has good and controllable drug delivery performance with no toxicity. Moreover, TFGP*DOX has a better inhibitory effect on SMMC-7721 cells than does a single target drug delivery system (FGP*DOX). The results of drug release analysis and cell inhibition studies showed that TFGP*DOX has a good sustained release function that can reduce the drug release rate in blood circulation over time and improve the local drug concentration in or near a targeted tumor. Therefore, the drug loading system (TFGP*DOX) has potential application value in the treatment of hepatocellular carcinoma.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Ácido Fólico/química , Grafite/química , Transferrina/química , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias Hepáticas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA