RESUMO
Background: Emerging studies have reported the vital role of histone modification in the dysfunction of pulmonary vascular endothelial cells, which acts as the key reason to drive the hypoxia-induced pulmonary vascular remodeling and pulmonary hypertension (PH). This study aims to investigate the role of a histone 3 lysine 9 (H3K9) methyltransferase, SET domain bifurcated 1 (SETDB1), in hypoxia-induced functional and phenotypical changes of pulmonary vascular endothelial cells. Methods: Primarily cultured rat pulmonary microvascular endothelial cells (PMVECs) were used as cell model. Specific knockdown and overexpression strategies were used to systematically determine the molecular regulation and function of SETDB1 in PMVECs. Results: SETDB1 is highly expressed and significantly upregulated in the pulmonary vascular endothelium of lung tissue isolated from SU5416/hypoxia-induced PH (SuHx-PH) rats, and also in pulmonary arterial endothelial cells (PAECs) from idiopathic pulmonary arterial hypertension (IPAH) patients, comparing to their respective controls. In primarily cultured rat PMVECs, treatment of hypoxia or CoCl2 induces significant upregulation of HIF2α, SETDB1 and H3K9me3. Specific knockdown and overexpression strategies indicate the hypoxia- or CoCl2-induced upregulation of SETDB1 is mediated through a HIF2α-dependent mechanism. Knockdown of SETDB1 significantly inhibits the hypoxia- or CoCl2-induced apoptosis, senescence and endothelial to mesenchymal transition (EndoMT) in rat PMVECs. Moreover, treatment of the specific inhibitor of histone methyltransferase, Chaetocin, effectively attenuates the disease pathogenesis of SuHx-PH in rat. Conclusions: Our results suggest that the HIF2α-dependent upregulation of SETDB1 facilitates hypoxia-induced functional and phenotypical changes of PMVECs, potentially contributing to the hypoxia-induced pulmonary vascular remodeling and PH.
RESUMO
Importance: Chimeric antigen receptor (CAR) T-cell therapy (CART) has transformed the treatment landscape of hematologic cancer, but has negligible effects for adult solid cancers. In this trial, an autologous CAR T-cell product demonstrated antitumor activity in heavily pretreated patients with metastatic colorectal cancer (mCRC). Objective: To evaluate the safety and efficacy of guanylate cyclase-C (GCC19) CART in participants with metastatic colorectal cancer (mCRC). Design, Setting, and Participants: This single-arm, nonrandomized, phase 1 trial was conducted at the First Hospital of Jilin University from December 3, 2020, to April 13, 2022. Data analysis was conducted from May 2022 to April 2024. Adults with relapsed and refractory mCRC expressing GCC were treated with GCC19CART, a mixture of autologous CAR T cells transduced with lentiviral vectors expressing genes that encode either CD-19 CAR or GCC CAR. Main Outcomes and Measures: Safety and tolerability of CAR T-cell therapy targeting GCC in patients with mCRC without therapeutic options is capable of conferring a reasonable likeliness of clinical benefit. Other outcomes included objective response rate, progression-free survival, overall survival, and immune activation. Results: Of 15 patients 9 (60%) were women, and the median (range) age was 44 (33-61) years. Treatment with GCC19CART was associated with the development of cytokine release syndrome and diarrhea in most patients, all of which were self-limited and manageable. The objective response rate was 40%, with a partial response in 2 of 8 and 4 of 7 patients treated with either 1 × 106 cells/kg or 2 × 106 cells/kg. Median overall survival was 22.8 months (95% CI, 13.4-26.1) at data cutoff; the median progress-free survival was 6.0 months in the high dose level group (95% CI, 3.0 to not available). Conclusions and Relevance: The results of this nonrandomized clinical trial suggest that GCC19CART was safe and tolerable in heavily pretreated patients with mCRC and is the first CAR T-cell therapy known to produce objective clinical activity in refractory cancer. Given the paucity of effective therapeutics developed for colorectal cancer in recent decades, the observation that CD-19 CART target engagement can robustly induce GCC19CART target engagement sufficient to produce objective activity may serve as a foundation to develop effective cellular therapy in mCRC and other solid cancers. Trial Registration: Chinese Clinical Trial Registry: ChiCTR2000040645.
RESUMO
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by pulmonary vascular remolding and occlusion, leading to the elevated pulmonary arterial pressures, right ventricular hypertrophy, and eventual heart failure if left untreated. Understanding the molecular mechanisms underlying the development and progression of pulmonary hypertension (PH) is crucial for devising efficient therapeutic approaches for the disease. Lung homogenates were collected weekly and underwent RNA-sequencing in the monocrotaline (MCT)-induced PH rat model to explore genes associated with PH progression. Statistical analyses revealed 1038, 1244, and 3125 significantly altered genes (P < 0.05, abs (log2fold change) > log21.5) between control and MCT-exposed rats during the first, second, and third week, respectively. Pathway enrichment analyses revealed involvement of cell cycle and innate immune system for the upregulated genes, GPCR and VEGF signaling for the downregulated genes. Furthermore, qRT-PCR validated upregulation of representative genes associated with cell cycle including Cdc25c (cell division cycle 25C), Cdc45, Top2a (topoisomerase IIα), Ccna2 (cyclin A2) and Ccnb1 (cyclin B1). Western blot and immunofluorescence analysis confirmed increases in PCNA, Ccna2, Top2a, along with other proliferation markers in the lung tissue of MCT-treated rats. In summary, RNA sequencing data highlights the significance of cell proliferation in progression of rodent PH.
Assuntos
Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Hipertensão Pulmonar , Monocrotalina , Animais , Ratos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Masculino , Ratos Sprague-Dawley , Transcriptoma , Pulmão/patologia , Pulmão/metabolismoRESUMO
Pulmonary hypertension (PH) is characterized by vascular remodeling predominantly driven by a phenotypic switching in pulmonary artery smooth muscle cells (PASMCs). However, the underlying mechanisms for this phenotypic alteration remain incompletely understood. Here, we identified that RNA methyltransferase METTL3 is significantly elevated in the lungs of hypoxic PH (HPH) mice and rats, as well as in the pulmonary arteries (PAs) of HPH rats. Targeted deletion of Mettl3 in smooth muscle cells exacerbated hemodynamic consequences of hypoxia-induced PH and accelerated pulmonary vascular remodeling in vivo. Additionally, the absence of METTL3 markedly induced phenotypic switching in PASMCs in vitro. Mechanistically, METTL3 depletion attenuated m6A modification and hindered the processing of pri-miR-143/145, leading to a downregulation of miR-143-3p and miR-145-5p. Inhibition of hnRNPA2B1, an m6A mediator involved in miRNA maturation, similarly resulted in a significant reduction of miR-143-3p and miR-145-5p. We demonstrated that miR-145-5p targets Krüppel-like factor 4 (KLF4) and miR-143-3p targets fascin actin-bundling protein 1 (FSCN1) in PASMCs. The decrease of miR-145-5p subsequently induced an upregulation of KLF4, which in turn suppressed miR-143/145 transcription, establishing a positive feedback circuit between KLF4 and miR-143/145. This regulatory circuit facilitates the persistent suppression of contractile marker genes, thereby sustaining PASMC phenotypic switch. Collectively, hypoxia-induced upregulation of METTL3, along with m6A mediated regulation of miR-143/145, might serve as a protective mechanism against phenotypic switch of PASMCs. Our results highlight a potential therapeutic strategy targeting m6A modified miR-143/145-KLF4 loop in the treatment of PH.
Assuntos
Adenosina , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Metiltransferases , MicroRNAs , Miócitos de Músculo Liso , Artéria Pulmonar , Fator 4 Semelhante a Kruppel/metabolismo , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Artéria Pulmonar/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Miócitos de Músculo Liso/metabolismo , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Ratos , Fenótipo , Masculino , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Camundongos Endogâmicos C57BL , Remodelação Vascular/genética , Ratos Sprague-Dawley , HumanosRESUMO
BACKGROUND: The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1. METHODS: Tissues from animal pulmonary hypertension models as well as human pulmonary artery endothelial cells from patients with PAH exhibited increased vascular UCHL1 staining and protein expression. Exposure to LDN57444, a UCHL1-specific inhibitor, reduced human pulmonary artery endothelial cell and smooth muscle cell proliferation. Across 3 preclinical PAH models, LDN57444-exposed animals, Uchl1 knockout rats (Uchl1-/-), and conditional Uchl1 knockout mice (Tie2Cre-Uchl1fl/fl) demonstrated reduced right ventricular hypertrophy, right ventricular systolic pressures, and obliterative vascular remodeling. Lungs and pulmonary artery endothelial cells isolated from Uchl1-/- animals exhibited reduced total and activated Akt with increased ubiquitinated Akt levels. UCHL1-silenced human pulmonary artery endothelial cells displayed reduced lysine(K)63-linked and increased K48-linked AKT1 levels. RESULTS: Supporting experimental data, we found that rs9321, a variant in a GC-enriched region of the UCHL1 gene, is associated with reduced methylation (n=5133), increased UCHL1 gene expression in lungs (n=815), and reduced cardiac index in patients (n=796). In addition, Gadd45α (an established demethylating gene) knockout mice (Gadd45α-/-) exhibited reduced lung vascular UCHL1 and AKT1 expression along with attenuated hypoxic pulmonary hypertension. CONCLUSIONS: Our findings suggest that UCHL1 deficiency results in PAH attenuation by means of reduced AKT1, highlighting a novel therapeutic pathway in PAH.
Assuntos
Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt , Ubiquitina Tiolesterase , Animais , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/metabolismo , Humanos , Camundongos , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Masculino , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/enzimologia , Ratos Sprague-Dawley , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Remodelação Vascular , Células Cultivadas , Proliferação de Células , Camundongos Endogâmicos C57BL , Indóis , OximasRESUMO
BACKGROUND: Preeclampsia (PE) is one of the most common hypertensive diseases, affecting 2%-8% of all pregnancies. The high maternal and fetal mortality rates of PE are due to a lack of early identification of affected pregnant women that would have led to closer monitoring and care. Recent data suggest that misfolded proteins might be a promising biomarker for PE prediction, which can be detected in urine samples of pregnant women according to their congophilia (aggregated) characteristic. OBJECTIVE: The main purpose of this trial is to evaluate the value of the urine congophilia-based detection of misfolded proteins for the imminent prediction of PE in women presenting with suspected PE. The secondary objectives are to demonstrate that the presence of urine misfolded proteins correlates with PE-related maternal or neonatal adverse outcomes, and to establish an accurate PE prediction model by combining misfolded proteins with multiple indicators. METHODS: At least 300 pregnant women with clinical suspicion of PE will be enrolled in this prospective cohort study. Participants should meet the following inclusion criteria in addition to a suspicion of PE: ≥18 years old, gestational week between 20+0 and 33+6, and single pregnancy. Consecutive urine samples will be collected, blinded, and tested for misfolded proteins and other PE-related biomarkers at enrollment and at 4 follow-up visits. Clinical assessments of PE status and related complications for all participants will be performed at regular intervals using strict diagnostic criteria. Investigators and participants will remain blinded to the results. Follow-up will be performed until 42 days postpartum. Data from medical records, including maternal and fetal outcomes, will be collected. The performance of urine misfolded proteins alone and combined with other biomarkers or clinical variables for the prediction of PE will be statistically analyzed. RESULTS: Enrollment started in July 2023 and was still open upon manuscript submission. As of March 2024, a total of 251 eligible women have been enrolled in the study and enrollment is expected to continue until August 2024. Results analysis is scheduled to start after all participants reach the follow-up endpoint and complete clinical data are collected. CONCLUSIONS: Upon completion of the study, we expect to derive an accurate PE prediction model, which will allow for proactive management of pregnant women with clinical suspicion of PE and possibly reduce the associated adverse pregnancy outcomes. The additional prognostic value of misfolded proteins is also expected to be confirmed. TRIAL REGISTRATION: Chinese Clinical Trials Registry ChiCTR2300074878; https://www.chictr.org.cn/showproj.html?proj=202096. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/54026.
Assuntos
Biomarcadores , Pré-Eclâmpsia , Adulto , Feminino , Humanos , Gravidez , Biomarcadores/urina , Pré-Eclâmpsia/urina , Pré-Eclâmpsia/diagnóstico , Valor Preditivo dos Testes , Estudos Prospectivos , Dobramento de Proteína , Ensaios Clínicos como AssuntoRESUMO
A major barrier to the impact of genomic diagnosis in patients with congenital malformations is the lack of understanding regarding how sequence variants contribute to disease pathogenesis and whether this information could be used to generate patient-specific therapies. Congenital diaphragmatic hernia (CDH) is among the most common and severe of all structural malformations; however, its underlying mechanisms are unclear. We identified loss-of-function sequence variants in the epigenomic regulator gene SIN3A in two patients with complex CDH. Tissue-specific deletion of Sin3a in mice resulted in defects in diaphragm development, lung hypoplasia, and pulmonary hypertension, the cardinal features of CDH and major causes of CDH-associated mortality. Loss of SIN3A in the lung mesenchyme resulted in reduced cellular differentiation, impaired cell proliferation, and increased DNA damage. Treatment of embryonic Sin3a mutant mice with anacardic acid, an inhibitor of histone acetyltransferase, reduced DNA damage, increased cell proliferation and differentiation, improved lung and pulmonary vascular development, and reduced pulmonary hypertension. These findings demonstrate that restoring the balance of histone acetylation can improve lung development in the Sin3a mouse model of CDH.
Assuntos
Hérnias Diafragmáticas Congênitas , Hipertensão Pulmonar , Humanos , Camundongos , Animais , Hipertensão Pulmonar/etiologia , Histonas , Acetilação , Hérnias Diafragmáticas Congênitas/genética , Hérnias Diafragmáticas Congênitas/complicações , Hérnias Diafragmáticas Congênitas/patologia , Pulmão/patologiaRESUMO
Pulmonary arterial hypertension (PAH) is a progressive disease that affects both the lungs and heart. Right ventricle (RV) hypertrophy is a primary pathological feature of PAH; however, its underlying molecular mechanisms remain insufficiently studied. In this study, we employed tandem mass tag (TMT)-based quantitative proteomics for the integrative analysis of the proteome and phosphoproteome of the RV derived from monocrotaline-induced PAH model rats. Compared with control samples, 564 significantly upregulated proteins, 616 downregulated proteins, 622 downregulated phosphopeptides, and 683 upregulated phosphopeptides were identified (P < 0.05, abs (log2 (fold change)) > log2 1.2) in the MCT samples. The quantitative real-time polymerase chain reaction (qRT-PCR) validated the expression levels of top 20 significantly altered proteins, including Nppa (natriuretic peptides A), latent TGF-ß binding protein 2 (Ltbp2), periostin, connective tissue growth factor 2 (Ccn2), Ncam1 (neural cell adhesion molecule), quinone reductase 2 (Nqo2), and tropomodulin 4 (Tmod4). Western blotting confirmed the upregulation of Ncam1 and downregulation of Nqo2 and Tmod4 in both MCT-induced and hypoxia-induced PH rat models. Pathway enrichment analyses indicated that the altered proteins are associated with pathways, such as vesicle-mediated transport, actin cytoskeleton organization, TCA cycle, and respiratory electron transport. These significantly changed phosphoproteins were enriched in pathways such as diabetic cardiomyopathy, hypertrophic cardiomyopathy, glycolysis/gluconeogenesis, and cardiac muscle contraction. In summary, this study provides an initial analysis of the RV proteome and phosphoproteome in the progression of PAH, highlighting several RV dysfunction-associated proteins and pathways.
Assuntos
Hipertensão Pulmonar , Ratos , Animais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/metabolismo , Proteoma/genética , Fosfopeptídeos , ProteômicaRESUMO
Intrahepatic cholestasis of pregnancy (ICP) is an idiopathic disease that occurs during mid-to-late pregnancy and is associated with various adverse pregnancy outcomes, including intrauterine fetal demise. However, since the underlying cause of ICP remains unclear, there is an ongoing debate on the phenotyping criteria used in the diagnostic process. Here, we identified single- and multi-symptomatic ICP (ICP-S and ICP-M) in 104,221 Chinese females from the ZEBRA maternity cohort, with the objective of exploring the risk implications of the two phenotypes on pregnancy outcomes and from environmental exposures. We employed multivariate binary logistic regression to estimate confounder-adjusted odds ratios and found that ICP-M was more strongly associated with preterm birth and low birth weight compared to ICP-S. Throughout pregnancy, incremental exposure to PM2.5, O3, and greenness could alter ICP risks by 17.3%, 12.5%, and -2.3%, respectively, with more substantial associations observed with ICP-M than with ICP-S. The major scientific advancements lie in the elucidation of synergistic risk interactions between pollutants and the protective antagonistic effects of greenness, as well as highlighting the risk impact of preconceptional environmental exposures. Our study, conducted in the context of the "three-child policy" in China, provides epidemiological evidence for policy-making to safeguard maternal and neonatal health.
Assuntos
Colestase Intra-Hepática , Nascimento Prematuro , Gravidez , Recém-Nascido , Feminino , Humanos , Resultado da Gravidez/epidemiologia , Estudos de Coortes , População do Leste Asiático , Nascimento Prematuro/epidemiologia , Exposição Ambiental , Colestase Intra-Hepática/epidemiologia , Colestase Intra-Hepática/complicaçõesRESUMO
A lens defect is a common quality issue that has seriously harmed the scattering characteristics and performance of optical elements, reducing the quality consistency of the finished products. Furthermore, the energy hotspots coming from the high-energy laser through diffraction of optical component defects are amplified step by step in multi-level laser conduction, causing serious damage to the optical system. Traditional manual detection mainly relies on experienced workers under a special light source environment with high labor intensity, low efficiency, and accuracy. The common machine vision techniques are incapable of detecting low contrast and complex morphological defects. To address these challenges, a deep learning-based method, named STMask R-CNN, is proposed to detect defects on the surface and inside of a lens in complex environments. A Swin Transformer, which focuses on improving the modeling and representation capability of the features in order to improve the detection performance, is incorporated into the Mask R-CNN in this case. A challenge dataset containing more than 3800 images (18000 defect sample targets) with five different types of optical lens defects was created to verify the proposed approach. According to our experiments, the presented STMask R-CNN reached a precision value of 98.2%, recall value of 97.7%, F1 score of 97.9%, mAP@0.5 value of 98.1%, and FPS value of 24 f/s, which outperformed the SSD, Faster R-CNN, and YOLOv5. The experimental results demonstrated that the proposed STMask R-CNN outperformed other popular methods for multiscale targets, low contrast target detection and nesting, stacking, and intersecting defects sample detection, exhibiting good generalizability and robustness, as well as detection speed to meet mechanical equipment production efficiency requirements. In general, this research offers a favorable deep learning-based method for real-time automatic detection of optical lens defects.
RESUMO
Spermatogonial stem cells (SSCs) play a crucial role in mammalian spermatogenesis and maintain the stable inheritance of the germline in livestock. However, stress and bacterial or viral infections can disrupt immune homeostasis of the testes, thereby leading to spermatogenesis destruction and infertility, which severely affects the health and productivity of mammals. This study aimed to explore the effect of ubiquitin C-terminal hydrolase L1 (UCHL1) knockdown (KD) in goat SSCs and mouse testes and investigate the potential anti-inflammatory function of UCHL1 in a poly(I:C)-induced inflammation model to maintain microenvironmental homeostasis. In vitro, the downregulation of UCHL1 (UCHL1 KD) in goat SSCs increased the expression levels of apoptosis and inflammatory factors and inhibited the self-renewal and proliferation of SSCs. In vivo, the structure of seminiferous tubules and spermatogenic cells was disrupted after UCHL1 KD, and the expression levels of apoptosis- and inflammation-related proteins were significantly upregulated. Furthermore, UCHL1 inhibited the TLR3/TBK1/IRF3 pathway to resist poly(I:C)-induced inflammation in SSCs by antagonizing HSPA8 and thus maintaining SSC autoimmune homeostasis. Most importantly, the results of this study showed that UCHL1 maintained immune homeostasis of SSCs and spermatogenesis. UCHL1 KD not only inhibited the self-renewal and proliferation of goat SSCs and spermatogenesis but was also involved in the inflammatory response of goat SSCs. Additionally, UCHL1 has an antiviral function in SSCs by antagonizing HSPA8, which provides an important basis for exploring the specific mechanisms of UCHL1 in goat spermatogenesis.
Assuntos
Cabras , Espermatogônias , Animais , Masculino , Camundongos , Homeostase , Inflamação/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Células-Tronco , Testículo/metabolismoRESUMO
Arsenic (As) is a cancerogenic metalloid ubiquitously distributed in the environment, which can be easily accumulated in food crops like rice. Jasmonic acid (JA) and its derivatives play critical roles in plant growth and stress response. However, the role of endogenous JA in As accumulation and detoxification is still poorly understood. In this study, we found that JA biosynthesis enzymes Allene Oxide Synthases, OsAOS1 and OsAOS2, regulate As accumulation and As tolerance in rice. Evolutionary bioinformatic analysis indicated that AOS1 and AOS2 have evolved from streptophyte algae (e.g. the basal lineage Klebsormidium flaccidum) - sister clade of land plants. Compared to other two AOSs, OsAOS1 and OsAOS2 were highly expressed in all examined rice tissues and their transcripts were highly induced by As in root and shoot. Loss-of-function of OsAOS1 (osaos1-1) showed elevated As concentration in grains, which was likely attributed to the increased As translocation from root to shoot when the plants were subjected to arsenate [As(V)] but not arsenite [As (III)]. However, the mutation of OsAOS2 (osaos2-1) showed no such effect. Moreover, osaos1-1 and osaos2-1 increased the sensitivity of rice plants to both As(V) and As(III). Disrupted expression of genes involved in As accumulation and detoxification, such as OsPT4, OsNIP3;2, and OsOASTL-A1, was observed in both osaos1-1 and osaos2-1 mutant lines. In addition, a As(V)-induced significant decrease in Reactive Oxygen Species (ROS) production was observed in the root of osaos1-1 but not in osaos2-1. Taken together, our results indicate OsAOS1 modulates both As allocation and detoxification, which could be partially attributed to the altered gene expression profiling and ROS homeostasis in rice while OsAOS2 is important for As tolerance.
RESUMO
Exposure to the spike protein or receptor-binding domain (S-RBD) of SARS-CoV-2 significantly influences endothelial cells and induces pulmonary vascular endotheliopathy. In this study, angiotensin-converting enzyme 2 humanized inbred (hACE2 Tg) mice and cultured pulmonary vascular endothelial cells were used to investigate how spike protein/S-RBD impacts pulmonary vascular endothelium. Results show that S-RBD leads to acute-to-prolonged induction of the intracellular free calcium concentration ([Ca2+]i) via acute activation of TRPV4, and prolonged upregulation of mechanosensitive channel Piezo1 and store-operated calcium channel (SOCC) key component Orai1 in cultured human pulmonary arterial endothelial cells (PAECs). In mechanism, S-RBD interacts with ACE2 to induce formation of clusters involving Orai1, Piezo1 and TRPC1, facilitate the channel activation of Piezo1 and SOCC, and lead to elevated apoptosis. These effects are blocked by Kobophenol A, which inhibits the binding between S-RBD and ACE2, or intracellular calcium chelator, BAPTA-AM. Blockade of Piezo1 and SOCC by GsMTx4 effectively protects the S-RBD-induced pulmonary microvascular endothelial damage in hACE2 Tg mice via normalizing the elevated [Ca2+]i. Comparing to prototypic strain, Omicron variants (BA.5.2 and XBB) of S-RBD induces significantly less severe cell apoptosis. Transcriptomic analysis indicates that prototypic S-RBD confers more severe acute impacts than Delta or Lambda S-RBD. In summary, this study provides compelling evidence that S-RBD could induce persistent pulmonary vascular endothelial damage by binding to ACE2 and triggering [Ca2+]i through upregulation of Piezo1 and Orai1. Targeted inhibition of ACE2-Piezo1/SOCC-[Ca2+]i axis proves a powerful strategy to treat S-RBD-induced pulmonary vascular diseases.
Assuntos
COVID-19 , Células Endoteliais , Animais , Humanos , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/genética , Cálcio , COVID-19/genética , SARS-CoV-2 , Canais de Cálcio/genética , Homeostase/genética , Canais IônicosRESUMO
Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by elevated pulmonary vascular resistance and increased pressure in the distal pulmonary arteries. Systematic analysis of the proteins and pathways involved in the progression of PAH is crucial for understanding the underlying molecular mechanism. In this study, we performed tandem mass tags (TMT)-based relative quantitative proteomic profiling of lung tissues from rats treated with monocrotaline (MCT) for 1, 2, 3 and 4 weeks. A total of 6759 proteins were quantified, among which 2660 proteins exhibited significant changes (p-value < 0.05, fold change < 0.83 or >1.2). Notably, these changes included several known PAH-related proteins, such as Retnla (resistin-like alpha) and arginase-1. Furthermore, the expression of potential PAH-related proteins, including Aurora kinase B and Cyclin-A2, was verified via Western blot analysis. In addition, we performed quantitative phosphoproteomic analysis on the lungs from MCT-induced PAH rats and identified 1412 upregulated phosphopeptides and 390 downregulated phosphopeptides. Pathway enrichment analysis revealed significant involvement of pathways such as complement and coagulation cascades and the signaling pathway of vascular smooth muscle contraction. Overall, this comprehensive analysis of proteins and phosphoproteins involved in the development and progression of PAH in lung tissues provides valuable insights for the development of potential diagnostic and treatment targets for PAH.
Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Animais , Hipertensão Pulmonar/metabolismo , Fosfopeptídeos , Proteômica , Pulmão/metabolismo , Artéria Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar , Modelos Animais de DoençasRESUMO
Objectives: To analyze and summarize the research hotspots and advancement of post-traumatic growth (PTG) over the past 15 years based on co-word analysis of keywords, and provide references for PTG-related research and clinical intervention. Methods: All studies related to PTG were retrieved from PubMed and Web of Science (WOS) from January 2013 to July 2022. A total of 11 Medical Subject Headings (MeSH) and keywords were used to identify qualified studies. Bibliographic Item Co-occurrence Matrix Builder (BICOMB; version 2.0) was used to conduct high-frequency keywords extraction and matrix setup, Graphical Clustering Toolkit (gCLUTO; version 1.0) was employed to perform clustering analysis, and SPSS (version 25.0) was used to carry out strategic diagram analysis. Results: A total of 2,370 publications were selected, from which 38 high-frequency keywords were extracted. The results revealed six research hotspots on PTG during the period from 2013 to 2022, including research on i) emotional reactions after negative life events, ii) PTG among cancer survivors, iii) rumination and resilience after trauma, iv) PTG among children and adolescents, v) role of social support and coping strategy in PTG, and vi) association between PTG and quality of life. Conclusions: This co-word analysis effectively reveals an overview of PTG over the past 15 years. The six research categories deduced from this study can reflect that the research content in the field of PTG is abundant, but some research topics have not yet been mature. The findings of this study are of great value to future investigations associated with PTG.
RESUMO
METHODS: The aetiological composition and clinical characteristics of patients with pulmonary hypertension (PH) hospitalised in the respiratory department were retrospectively analysed, as well as the correlation between transthoracic echocardiography (TTE) and right heart catheterization (RHC) for evaluating pulmonary artery systolic pressure (PASP) and mean pulmonary artery pressure (mPAP). RESULTS: Of 731 patients, 544 (74.42%) were diagnosed with PH by RHC. Pulmonary arterial hypertension (PAH) was the most common type of PH, accounting for 30.10%; PH due to lung disease and/or hypoxia accounted for 20.79%, and PH due to pulmonary artery obstructions accounted for 19.29%. TTE has the highest specificity for diagnosing PH due to pulmonary artery obstructions. The specificity was 0.9375, the sensitivity was 0.7361 and the area under the ROC curve (AUC) was 0.836. PASP, and mPAP estimated by TTE were different for various types of PH. In terms of PASP, TTE overestimated PASP in PH due to lung disease and/or hypoxia, but there was no significant difference compared with RHC (P > 0.05). TTE underestimates PAH patients' PASP compared with RHC. In terms of mPAP, TTE underestimated the mPAP of all types of PH, as there was a significant difference in the TTE-estimated mPAP of patients with PAH compared with RHC but not on other types of PH. Pearson correlation analysis of TTE and RHC showed a moderate overall correlation (rPASP 0.598, P < 0.001; rmPAP 0.588, P < 0.001). CONCLUSIONS: Among the patients with PH in the respiratory department, patients with PAH accounted for the majority. TTE has high sensitivity and specificity for the diagnosis of PH due to pulmonary artery obstructions in the respiratory department.
Assuntos
Hipertensão Pulmonar , Pneumopatias , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/epidemiologia , Estudos Retrospectivos , Ecocardiografia , Artéria Pulmonar/diagnóstico por imagem , Pneumopatias/complicações , Hipertensão Pulmonar Primária Familiar/complicações , Cateterismo Cardíaco/efeitos adversosRESUMO
Cardiopulmonary complications are major drivers of mortality caused by the SARS-CoV-2 virus. Interleukin-18, an inflammasome-induced cytokine, has emerged as a novel mediator of cardiopulmonary pathologies but its regulation via SARS-CoV-2 signaling remains unknown. Based on a screening panel, IL-18 was identified amongst 19 cytokines to stratify mortality and hospitalization burden in patients hospitalized with COVID-19. Supporting clinical data, administration of SARS-CoV-2 Spike 1 (S1) glycoprotein or receptor-binding domain (RBD) proteins into human angiotensin-converting enzyme 2 (hACE2) transgenic mice induced cardiac fibrosis and dysfunction associated with higher NF-κB phosphorylation (pNF-κB) and cardiopulmonary-derived IL-18 and NLRP3 expression. IL-18 inhibition via IL-18BP resulted in decreased cardiac pNF-κB and improved cardiac fibrosis and dysfunction in S1- or RBD-exposed hACE2 mice. Through in vivo and in vitro work, both S1 and RBD proteins induced NLRP3 inflammasome and IL-18 expression by inhibiting mitophagy and increasing mitochondrial reactive oxygenation species. Enhancing mitophagy prevented Spike protein-mediated IL-18 expression. Moreover, IL-18 inhibition reduced Spike protein-mediated pNF-κB and EC permeability. Overall, the link between reduced mitophagy and inflammasome activation represents a novel mechanism during COVID-19 pathogenesis and suggests IL-18 and mitophagy as potential therapeutic targets.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Camundongos , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , COVID-19/genética , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-18/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitofagia/genética , Inflamação/genética , Inflamação/metabolismo , CitocinasRESUMO
Rationale: Genetic studies suggest that SOX17 (SRY-related HMG-box 17) deficiency increases pulmonary arterial hypertension (PAH) risk. Objectives: On the basis of pathological roles of estrogen and HIF2α (hypoxia-inducible factor 2α) signaling in pulmonary artery endothelial cells (PAECs), we hypothesized that SOX17 is a target of estrogen signaling that promotes mitochondrial function and attenuates PAH development via HIF2α inhibition. Methods: We used metabolic (Seahorse) and promoter luciferase assays in PAECs together with the chronic hypoxia murine model to test the hypothesis. Measurements and Main Results: Sox17 expression was reduced in PAH tissues (rodent models and from patients). Chronic hypoxic pulmonary hypertension was exacerbated by mice with conditional Tie2-Sox17 (Sox17EC-/-) deletion and attenuated by transgenic Tie2-Sox17 overexpression (Sox17Tg). On the basis of untargeted proteomics, metabolism was the top pathway altered by SOX17 deficiency in PAECs. Mechanistically, we found that HIF2α concentrations were increased in the lungs of Sox17EC-/- and reduced in those from Sox17Tg mice. Increased SOX17 promoted oxidative phosphorylation and mitochondrial function in PAECs, which were partly attenuated by HIF2α overexpression. Rat lungs in males displayed higher Sox17 expression versus females, suggesting repression by estrogen signaling. Supporting 16α-hydroxyestrone (16αOHE; a pathologic estrogen metabolite)-mediated repression of SOX17 promoter activity, Sox17Tg mice attenuated 16αOHE-mediated exacerbations of chronic hypoxic pulmonary hypertension. Finally, in adjusted analyses in patients with PAH, we report novel associations between a SOX17 risk variant, rs10103692, and reduced plasma citrate concentrations (n = 1,326). Conclusions: Cumulatively, SOX17 promotes mitochondrial bioenergetics and attenuates PAH, in part, via inhibition of HIF2α. 16αOHE mediates PAH development via downregulation of SOX17, linking sexual dimorphism and SOX17 genetics in PAH.