RESUMO
PURPOSE: The detrimental effects of pathological angiogenesis on the visual function are indisputable. Within a prominent role in chromosome segregation and tumor progression, aurora kinase B (AURKB) assumes a prominent role. However, its role in pathological retinal angiogenesis remains unclear. This study explores this latent mechanism. METHODS: To inhibit AURKB expression, we designed specific small interfering RNAs targeting AURKB and transfected them into vascular endothelial cells. Barasertib was selected as the AURKB inhibitor. The anti-angiogenic effects of both AURKB siRNA and barasertib were assessed in vitro by cell proliferation, transwell migration, and tube formation. To evaluate the angiogentic effects of AURKB in vivo, neonatal mice were exposed to 75% oxygen followed by normoxic repositioning to establish an oxygen-induced retinopathy (OIR) model. Subsequently, phosphate-buffered saline and barasertib were administered into OIR mice via intravitreal injection. The effects of AURKB on cell cycle proteins were determined by western blot analysis. RESULTS: We found that AURKB was overexpressed during pathological angiogenesis. AURKB siRNA and barasertib significantly inhibited endothelial cell proliferation, migration, and tube formation in vitro. Furthermore, AURKB inhibition attenuated retinal angiogenesis in the OIR model. A possible mechanism is the disruption of cell cycle by AURKB inhibition. CONCLUSION: In conclusion, AURKB significantly influenced pathological retinal angiogenesis, thereby presenting a promising therapeutic target in ocular neovascular diseases.
Assuntos
Organofosfatos , Quinazolinas , Doenças Retinianas , Neovascularização Retiniana , Animais , Camundongos , Angiogênese , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/metabolismo , Divisão Celular , Proliferação de Células , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Oxigênio , Neovascularização Retiniana/metabolismo , RNA Interferente Pequeno/uso terapêuticoRESUMO
BACKGROUND: Pathological retinal angiogenesis resulting from a variety of ocular diseases including oxygen induced retinopathy, diabetic retinopathy and ocular vein occlusion, is one of the major reasons for vision loss, yet the therapeutic option is limited. Multiple nanoparticles have been reported to alleviate angiogenic retinopathy. However, the adverse effect cannot be ignored due to the relatively large scale. Graphene quantum dots (GQDs) have shown potential in drug delivery and have been proved biocompatible. In this study, Graphene quantum dots are extensively investigated for their application in angiogenic retinopathy therapy. RESULTS: We showed that GQDs were biocompatible nanomaterials in vitro and in vivo. The nanoparticles have a dose-dependent inhibitory effect on proliferation, migration, tube formation and sprouting of human umbilical vein endothelial cells (HUVECs). Further data show that GQDs could inhibit pathological retinal neovascularization in an oxygen-induced retinopathy (OIR) model. The data of RNA sequencing suggested that periostin is involved in this process. GQDs inhibit the expression of periostin via STAT3, and further regulated cell cycle-related protein levels through ERK pathway. The signaling pathway was conformed in vivo using OIR mouse model. CONCLUSIONS: The present study indicated that GQDs could be a biocompatible anti-angiogenic nanomedicine in the treatment of pathological retinal neovascularization via disrupting periostin/ERK pathway and subsequent cell cycle.