Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(1): 393-404, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38166404

RESUMO

Coarse-grained modeling shows potential in exploring the thermo-mechanical behaviors of polymers applied in harsh conditions such as cryogenic environment, but its accuracy in simulating fracture behaviors of highly cross-linked epoxy thermosets is largely limited due to the complex molecular structures of the cross-linked networks. We address this fundamental problem by developing a CG modeling method where the backbones and electrostatic interaction (EI) contributions in the cross-linked networks are retained, and thus the potentials of the CG model can be directly extracted, or parametrized on the basis of, existing all-atomistic (AA) force fields. A multilevel parametrization procedure was adopted, where the bond potentials were parametrized relying on the results of density functional theory (DFT) simulation, whereas the nonbond potentials were parametrized by renormalizing the cohesive interaction strength. Remarkably, the CG model can reproduce stress-strain responses highly consistent with the AA simulation results at multiple stages, including elastic deformation, yielding, plastic flow, strain hardening, etc., and the straightforward parametrization procedure can be easily transferred to different materials and thermodynamic conditions. The CG modeling method was then used to build a large-scale representative volume element (RVE) to investigate the microscopic fracture behavior of an epoxy thermoset. It has been discovered that EI contributions play a significant role in generating correct mechanical responses and fracture morphologies. The influences of temperature (i.e., from room to cryogenic temperatures) and strain rates were discussed, and the fracture morphology in the RVE was unveiled and analyzed in a quantitative manner.

2.
J Colloid Interface Sci ; 658: 913-922, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157615

RESUMO

Thin-film sensors are essential for real-time monitoring of components in high-temperature environments. Traditional fabrication methods often involve complicated fabrication steps or require prolonged high-temperature annealing, limiting their practical applicability. Here, we present an approach using direct ink writing and laser scanning (DIW-LS) to fabricate high-temperature functional thin films. An indium tin oxide (ITO)/preceramic polymer (PP) ink suitable for DIW was developed. Under LS, the ITO/PP thin film shrank in volume. Meanwhile, the rapid pyrolysis of PP into amorphous precursor-derived ceramic (PDC) facilitated the faster sintering of ITO nanoparticles and improved the densification of the thin film. This process realized the formation of a conductive network of interconnected ITO nanoparticles. The results show that the ITO/PDC thin film exhibits excellent stability, with a drift rate of 4.7 % at 1000 °C for 25 h, and withstands temperatures up to 1250 °C in the ambient atmosphere. It is also sensitive to strain, with a maximum gauge factor of -6.0. As a proof of concept, we have used DIW-LS technology to fabricate a thin-film heat flux sensor on the surface of the turbine blade, capable of measuring heat flux densities over 1 MW/m2. This DIW-LS process provides a viable approach for the integrated, rapid, and flexible fabrication of thin film sensors for harsh environments.

3.
ACS Biomater Sci Eng ; 9(12): 6783-6796, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37969099

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in high morbidity and mortality rates worldwide. Although the epidemic has been controlled in many areas and numerous patients have been successfully treated, the risk of reinfection persists due to the low neutralizing antibody titers and weak immune response. To provide long-term immune protection for infected patients, novel bispecific CB6/dendritic cell (DC)-specific intercellular adhesion molecule 3-grabbing nonintegrin (SIGN) nanovesicles (NVs) were constructed to target both the SARS-CoV-2 spike protein (S) and the DC receptors for virus neutralization and immune activation. Herein, we designed NVs expressing both CB6 and DC-SIGN single chain variable fragments (scFvs) on the surface to block SARS-CoV-2 invasion and activate DC function. Monophosphoryl lipid A (MPLA) was loaded into the CB6/DC-SIGN NVs as an adjuvant to promote this process. The CB6/DC-SIGN NVs prevented a pseudovirus expressing the S protein from infecting the target cells expressing high levels of angiotensin-converting enzyme 2 in vitro. Additionally, CB6/DC-SIGN NVs admixed with S-expressing pseudoviruses activated the DCs, which was promoted by the adjuvant MPLA loaded in the NVs. Using a mouse model, we also confirmed that the CB6/DC-SIGN NVs effectively improved the neutralizing antibody titer and inhibited the growth of tumors expressing the S protein after 3 weeks of treatment. This potential NV-based treatment not only exerts a blocking effect by binding the S protein in the short term but may also provide patients with long-term protection against secondary infections.


Assuntos
COVID-19 , Anticorpos de Cadeia Única , Humanos , COVID-19/prevenção & controle , Anticorpos de Cadeia Única/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , SARS-CoV-2/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Anticorpos Neutralizantes/uso terapêutico
4.
J Transl Med ; 21(1): 383, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308954

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is a worldwide health threat with high annual morbidity and mortality. Chemotherapeutic drugs such as paclitaxel (PTX) have been widely applied clinically. However, systemic toxicity due to the non-specific circulation of PTX often leads to multi-organ damage, including to the liver and kidney. Thus, it is necessary to develop a novel strategy to enhance the targeted antitumor effects of PTX. METHODS: Here, we engineered exosomes derived from T cells expressing the chimeric antigen receptor (CAR-Exos), which targeted mesothelin (MSLN)-expressing Lewis lung cancer (MSLN-LLC) through the anti-MSLN single-chain variable fragment (scFv) of CAR-Exos. PTX was encapsulated into CAR-Exos (PTX@CAR-Exos) and administered via inhalation to an orthotopic lung cancer mouse model. RESULTS: Inhaled PTX@CAR-Exos accumulated within the tumor area, reduced tumor size, and prolonged survival with little toxicity. In addition, PTX@CAR-Exos reprogrammed the tumor microenvironment and reversed the immunosuppression, which was attributed to infiltrating CD8+ T cells and elevated IFN-γ and TNF-α levels. CONCLUSIONS: Our study provides a nanovesicle-based delivery platform to promote the efficacy of chemotherapeutic drugs with fewer side effects. This novel strategy may ameliorate the present obstacles to the clinical treatment of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , Animais , Camundongos , Paclitaxel , Linfócitos T CD8-Positivos , Microambiente Tumoral
5.
Artigo em Inglês | MEDLINE | ID: mdl-36780511

RESUMO

Polymer-derived ceramic (PDC)-based high-temperature thin-film sensors (HTTFSs) exhibit promising applications in the condition monitoring of critical components in aerospace. However, fabricating PDC-based HTTFS integrated with high-efficiency, high-temperature anti-oxidation, and customized patterns remains challenging. In this work, we introduce a rapid and flexible selecting laser pyrolysis combined with a direct ink writing process to print double-layer high-temperature antioxidant PDC composite thin-film thermistors under ambient conditions. The sensitive layer (SL) was directly written on an insulating substrate with excellent conductivity by laser-induced graphitization. Then, the antioxidant layer (AOL) was written on the surface of the SL to realize the integrated manufacturing of double-functional layers. Through characterization analysis, it was shown that B2O3 and SiO2 glass phases generated by the PDC composite AOL could effectively prevent oxygen intrusion. Therefore, the fabricated PDC composite thermistors exhibited a negative temperature coefficient in the temperature range from 100 to 1100 °C and high repeatability below 800 °C. Meanwhile, it has excellent high-temperature stability at 800 °C with a resistance change of only 2.4% in 2 h. Furthermore, the high-temperature electrical behavior of the thermistor was analyzed. The temperature dependence of the conductivity for this thermistor has shown an agreement with the Mott's variable range hopping mechanism. Additionally, the thermistor was fabricated on the surface of an aero-engine blade to verify its feasibility below 800 °C, showing the great potential of this work for state sensing on the surface of high-temperature components, especially for customized requirements.

6.
Adv Mater ; 35(19): e2211138, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36814099

RESUMO

Chimeric antigen receptor-T (CAR-T) cell therapy has shown remarkable success in eradicating hematologic malignancies; however, its efficacy in treating solid tumors has always been limited due to the presence of an immune-suppressive tumor microenvironment (TME). Here, genetically programmable cellular vesicles expressing high-affinity anti-programmed death-ligand 1 single chain variable fragment (anti-PD-L1 scFv) loaded with glutamine antagonist (D@aPD-L1 NVs) are developed to metabolically dismantle the immunosuppressive TME and enhance the efficiency of anti-mesothelin CAR-T cells in orthotopic lung cancer. As anti-PD-L1 scFv can specifically bind to the programmed death-ligand 1 (PD-L1) on tumor cells, D@aPD-L1 NVs enable the targeted delivery of glutamine antagonists to the tumor site and address the upregulation of PD-L1 on tumor cells, which prevents the premature exhaustion of CAR-T cells. More importantly, D@aPD-L1 NVs effectively reduce the number of immunosuppressive cells and promote the recruitment of inflammatory cells and the secretion of inflammatory cytokines in tumor tissues. These unique features of D@aPD-L1 NVs improve the infiltration and effector functions of CAR-T cells, which ultimately enhance the anti-tumor ability and long-term memory immunity of CAR-T cells. The findings support that D@aPD-L1 NVs act as a promising drug to strengthen the effectiveness of CAR-T cells against solid tumors.


Assuntos
Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T , Glutamina/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
8.
J Nanobiotechnology ; 19(1): 391, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823562

RESUMO

BACKGROUND: Considering the threat of the COVID-19 pandemic, caused by SARS-CoV-2, there is an urgent need to develop effective treatments. At present, neutralizing antibodies and small-molecule drugs such as remdesivir, the most promising compound to treat this infection, have attracted considerable attention. However, some potential problems need to be concerned including viral resistance to antibody-mediated neutralization caused by selective pressure from a single antibody treatment, the unexpected antibody-dependent enhancement (ADE) effect, and the toxic effect of small-molecule drugs. RESULTS: Here, we constructed a type of programmed nanovesicle (NV) derived from bispecific CAR-T cells that express two single-chain fragment variables (scFv), named CR3022 and B38, to target SARS-CoV-2. Nanovesicles that express both CR3022 and B38 (CR3022/B38 NVs) have a stronger ability to neutralize Spike-pseudovirus infectivity than nanovesicles that express either CR3022 or B38 alone. Notably, the co-expression of CR3022 and B38, which target different epitopes of spike protein, could reduce the incidence of viral resistance. Moreover, the lack of Fc fragments on the surface of CR3022/B38 NVs could prevent ADE effects. Furthermore, the specific binding ability to SARS-CoV-2 spike protein and the drug loading capacity of CR3022/B38 NVs can facilitate targeted delivery of remdesiver to 293 T cells overexpressing spike protein. These results suggest that CR3022/B38 NVs have the potential ability to target antiviral drugs to the main site of viral infection, thereby enhancing the antiviral ability by inhibiting intracellular viral replication and reducing adverse drug reactions. CONCLUSIONS: In summary, we demonstrate that nanovesicles derived from CAR-T cells targeting the spike protein of SARS-COV-2 have the ability to neutralize Spike-pseudotyped virus and target antiviral drugs. This novel therapeutic approach may help to solve the dilemma faced by neutralizing antibodies and small-molecule drugs in the treatment of COVID-19.


Assuntos
COVID-19/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Antivirais/uso terapêutico , COVID-19/imunologia , Humanos , Modelos Teóricos
9.
NPJ Biofilms Microbiomes ; 7(1): 61, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294722

RESUMO

The human oral and gut commensal microbes play vital roles in the development and maintenance of immune homeostasis, while its association with susceptibility and severity of SARS-CoV-2 infection is barely understood. In this study, we investigated the dynamics of the oral and intestinal flora before and after the clearance of SARS-CoV-2 in 53 COVID-19 patients, and then examined their microbiome alterations in comparison to 76 healthy individuals. A total of 140 throat swab samples and 81 fecal samples from these COVID-19 patients during hospitalization, and 44 throat swab samples and 32 fecal samples from sex and age-matched healthy individuals were collected and then subjected to 16S rRNA sequencing and viral load inspection. We found that SARS-CoV-2 infection was associated with alterations of the microbiome community in patients as indicated by both alpha and beta diversity indexes. Several bacterial taxa were identified related to SARS-CoV-2 infection, wherein elevated Granulicatella and Rothia mucilaginosa were found in both oral and gut microbiome. The SARS-CoV-2 viral load in those samples was also calculated to identify potential dynamics between COVID-19 and the microbiome. These findings provide a meaningful baseline for microbes in the digestive tract of COVID-19 patients and will shed light on new dimensions for disease pathophysiology, potential microbial biomarkers, and treatment strategies for COVID-19.


Assuntos
COVID-19/microbiologia , Microbioma Gastrointestinal/fisiologia , SARS-CoV-2/isolamento & purificação , Carga Viral , Bactérias/classificação , Bactérias/genética , COVID-19/diagnóstico , COVID-19/virologia , Fezes/microbiologia , Feminino , Hospitalização , Humanos , Masculino , Boca/microbiologia , RNA Ribossômico 16S , SARS-CoV-2/genética
10.
ACS Appl Mater Interfaces ; 13(18): 20995-21006, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33930273

RESUMO

COVID-19 has been diffusely pandemic around the world, characterized by massive morbidity and mortality. One of the remarkable threats associated with mortality may be the uncontrolled inflammatory processes, which were induced by SARS-CoV-2 in infected patients. As there are no specific drugs, exploiting safe and effective treatment strategies is an instant requirement to dwindle viral damage and relieve extreme inflammation simultaneously. Here, highly biocompatible glycyrrhizic acid (GA) nanoparticles (GANPs) were synthesized based on GA. In vitro investigations revealed that GANPs inhibit the proliferation of the murine coronavirus MHV-A59 and reduce proinflammatory cytokine production caused by MHV-A59 or the N protein of SARS-CoV-2. In an MHV-A59-induced surrogate mouse model of COVID-19, GANPs specifically target areas with severe inflammation, such as the lungs, which appeared to improve the accumulation of GANPs and enhance the effectiveness of the treatment. Further, GANPs also exert antiviral and anti-inflammatory effects, relieving organ damage and conferring a significant survival advantage to infected mice. Such a novel therapeutic agent can be readily manufactured into feasible treatment for COVID-19.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Ácido Glicirrízico/uso terapêutico , Inflamação/tratamento farmacológico , Nanopartículas/uso terapêutico , Viroses/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Antioxidantes/uso terapêutico , Antivirais/química , Proteínas do Nucleocapsídeo de Coronavírus/farmacologia , Citocinas/metabolismo , Feminino , Ácido Glicirrízico/química , Humanos , Fígado/patologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Hepatite Murina/efeitos dos fármacos , Nanopartículas/química , Fosfoproteínas/farmacologia , Células RAW 264.7 , SARS-CoV-2/química , Células THP-1 , Carga Viral/efeitos dos fármacos , Viroses/patologia , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
12.
Front Immunol ; 10: 1925, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474993

RESUMO

Zika virus (ZIKV) is a newly emerging flavivirus that broadly exhibits in various bodily tissues and fluids, especially in the brain, and ZIKV infection often causes microcephaly. Previous studies have been reported that ZIKV can infect renal cells and can be detected in the urine samples of infected individuals. However, whether ZIKV infection causes renal diseases and its pathogenic mechanisms remains unknown. Here, we identified that ZIKV infection resulted in acute kidney injury (AKI) in both newborn and adult mouse models by increasing the levels of AKI-related biomarkers [e.g., serum creatinine (Scr), kidney injury molecular-1 (Kim-1), and neutrophil gelatinase-associated lipocalin (NGAL)]. ZIKV infection triggered the inflammatory response and renal cell injury by activating Nod-like receptor 3 (NLRP3) inflammasome and secreting interleukin-1ß (IL-1ß). IL-1ß inhibited aquaporins expression and led to water re-absorption disorder. Furthermore, ZIKV infection induced a decreased expression of B-cell lymphoma-2 (Bcl-2) in the kidney. Overexpression of Bcl-2 attenuated ZIKV-induced NLRP3 inflammasome activation in renal cells and down-regulated PARP/caspase-3-mediated renal apoptosis. Overall, our findings demonstrated that ZIKV infection induced AKI by activating NLRP3 inflammasome and apoptosis through suppressing Bcl-2 expression, which provided potential therapeutic targets for ZIKV-associated renal diseases.


Assuntos
Injúria Renal Aguda/imunologia , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/virologia , Animais , Animais Recém-Nascidos , Apoptose/imunologia , Caspase 3/imunologia , Caspase 3/metabolismo , Linhagem Celular , Chlorocebus aethiops , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Regulação da Expressão Gênica/imunologia , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Poli(ADP-Ribose) Polimerase-1/imunologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Vero , Zika virus/fisiologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA