Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 401: 130752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685514

RESUMO

Oxygenic photogranules (OPGs) are currently obtained in permanent famine or cyclic feast-famine regimes. Whether photogranulation occurs under a permanent feast regime and how these regimes impact OPGs are unknown. Herein, the three regimes, each applied in two replicate hydrodynamic reactors, were established by different feeding frequencies. Results showed that OPGs were successfully cultivated in all regimes after 24-36 days of photogranulation phases with similar microbial community functions, including filamentous gliding, extracellular polymeric substances production, and carbon/nitrogen metabolism. The OPGs were then operated under the same sequencing batch mode and all achieved efficient removal of chemical oxygen demand (>91 %), ammonium (>96 %), and total nitrogen (>76 %) after different adaptation periods (19-41 days). Notably, the permanent feast regime obtained OPGs with the best physicochemical properties, the shortest adaptation period, and the lowest effluent turbidity, thus representing a novel means of hydrodynamic cultivating OPGs with better performances for sustainable wastewater treatment.


Assuntos
Hidrodinâmica , Nitrogênio , Oxigênio , Oxigênio/metabolismo , Reatores Biológicos , Análise da Demanda Biológica de Oxigênio , Águas Residuárias/química , Carbono/química , Purificação da Água/métodos
2.
Bioresour Technol ; 401: 130736, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670289

RESUMO

Oxygenic photogranules (OPGs) have great potential for the aeration-free treatment of various wastewater, however, the effects of wastewater carbon composition on OPGs remain unknown. This study investigated the hydrodynamic photogranulation in three types of wastewater with the same total carbon concentration but different inorganic/organic carbon compositions, each operated at two replicated reactors. Results showed that photogranulation failed in reactors fed with only inorganic carbon. In reactors with equal inorganic and organic carbon, loose-structured OPGs formed but then disintegrated. Comparatively, reactors treating organic carbon-based wastewater obtained regular and dense OPGs with better settleability, lower effluent turbidity, excellent structural stability, and higher carbon assimilation rate. Sufficient amounts of organic carbon were crucial for the formation and stability of OPGs as they promoted the secretion of extracellular polymeric substances (EPS) and the growth of filamentous cyanobacteria. This study provides a basis for the startup of OPGs process and facilitates its large-scale application.


Assuntos
Carbono , Hidrodinâmica , Compostos Orgânicos , Oxigênio , Águas Residuárias , Carbono/química , Águas Residuárias/química , Reatores Biológicos , Purificação da Água/métodos , Cianobactérias/metabolismo
3.
Water Res ; 253: 121315, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382289

RESUMO

The microalgal-bacterial granular sludge (MBGS) based enhanced biological phosphorus removal (EBPR) (MBGS-EBPR) was recently proposed as a sustainable wastewater treatment process. Previous work showed the possibility of obtaining an MBGS-EBPR process starting from mature MBGS and phosphate-accumulating organisms (PAOs) enriched aerobic granular sludge (AGS) and validated the effectiveness of removing carbon/nitrogen/phosphorus with mechanical aeration. The present work evaluated whether the same could be achieved starting from conventional activated sludge and operating under aeration-free conditions in an alternating dark/light photo-sequencing batch reactor (PSBR). We successfully cultivated filamentous MBGS with a high settling rate (34.5 m/h) and fast solid-liquid separation performance, which could be attributed to the proliferation of filamentous cyanobacteria and stimulation of extracellular polymeric substances (EPS) production. The process achieved near-complete steady-state removal of carbon (97.2 ± 1.9 %), nitrogen (93.9 ± 0.7 %), and phosphorus (97.7 ± 1.7 %). Moreover, improved phosphorus release/uptake driven by photosynthetic oxygenation under dark/light cycles suggests the enrichment of PAOs and the establishment of MBGS-EBPR. Batch tests showed similar phosphorus release rates in the dark but significantly lower phosphorus uptake rates in the presence of light when the filamentous granules were disrupted. This indicates that the filamentous structure of MBGS has minor limitations on substrate mass transfer while exerting protective effects on PAOs, thus playing an important role in sustaining the function of aeration-free EBPR. Microbial assays further indicated that the enrichment of filamentous cyanobacteria (Synechocystis, Leptoolybya, and Nodosilinea), putative PAOs and EPS producers (Hydrogenophaga, Thauera, Flavobacterium, and Bdellovibrio) promoted the development of filamentous MBGS and enabled the high-efficient pollutant removal. This work provides a feasible and cost-effective strategy for the startup and operation of this innovative process.


Assuntos
Microalgas , Esgotos , Esgotos/química , Fósforo , Reatores Biológicos/microbiologia , Fosfatos , Bactérias , Nitrogênio , Carbono
4.
Chemosphere ; 286(Pt 2): 131781, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34365165

RESUMO

Removal of nitrogen from wastewater with low carbon/nitrogen ratio was treated by using a denitrification packed bed reactor. Composite fillers with both autotrophic and heterotrophic denitrification capacity were prepared by mixing melted polycaprolactone and elemental sulfur at various alkalinity ratios (heterotrophic to autotrophic ratios of 1:2, 1:1, 3:2, and 2:1). Optimum denitrification was achieved at a ratio of 2:1. The diversity of the microbial community in the biofilm on the surface of the composite fillers showed that the increase of the elemental sulfur in the composite fillers has led to the increase of the microbial abundance. Furthermore, biofilm composition developed from a single dominant species to multiple species, and genes related to sulfur metabolism increased while those related to denitrification decreased slightly.


Assuntos
Nitrogênio , Purificação da Água , Processos Autotróficos , Reatores Biológicos , Carbono , Desnitrificação , Nitratos
5.
J Environ Manage ; 292: 112696, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33984643

RESUMO

Aerobic granular sludge (AGS) is a promising technology in treating saline wastewater. The effects of sodium sulfate on contaminant removal performance and sludge characteristics of AGS were studied. The results showed that under the stress of sodium sulfate, AGS kept good removal performance of ammonia nitrogen (NH+ 4-N), chemical oxygen demand (COD), and total nitrogen (TN), with removal efficiency reaching 98.7%, 91.5% and 62.7%, respectively. When sodium sulfate reached 14700 mg/L, nitrite oxidizing bacteria (NOB) were inhibited and nitrite accumulation occurred, but it had little impact on total phosphorus (TP) removal. Under the stress of sodium sulfate, compactness and settling performance of AGS was enhanced. The microbial community greatly varied and the microbial diversity of aerobic granular sludge has decreased under the stress of sodium sulfate. The study reveals that AGS has great potential in application on treating saline wastewater.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Nitrogênio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA