Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Stem Cell Res Ther ; 15(1): 293, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256850

RESUMO

BACKGROUND: Understanding the role of cytokines in tooth development is critical for advancing dental tissue engineering. Fibroblast growth factor 9 (FGF9) is the only FGF consistently expressed throughout dental epithelial tissue, from the initiation of tooth bud formation to tooth maturation. However, mice lacking Fgf9 (Fgf9-/-) surprisingly show no obvious abnormalities in tooth development, suggesting potential compensation by other FGFs. Here we report findings from an Fgf9S99N mutation mouse model, a loss-of-function mutation with a dominant negative effect. Our study reveals that Fgf9 is crucial for dental epithelial stem cell (DESC) survival and enamel formation. METHODS: To dissect the role of Fgf9 in tooth development, we performed the micro-CT, histomorphological analysis and gene expression assay in mice and embryos with S99N mutation. In addition, we assessed the effect of FGF9 on the DESC survival and dental epithelial differentiation by DESC sphere formation assay and tooth explant culture. Cell/tissue culture methods, gene expression analysis, specific inhibitors, and antibody blockage analysis were employed to explore how Fgf9 regulates enamel differentiation and DESC survival through both direct and indirect mechanisms. RESULTS: The Fgf9S99N mutation in mice led to reduced ameloblasts, impaired enamel formation, and increased apoptosis in the cervical loop (CL). DESC sphere culture experiments revealed that FGF9 facilitated DESC survival via activating ERK/CREB signaling, without affecting cell proliferation. Furthermore, in vitro tissue culture experiments demonstrated that FGF9 promoted enamel formation in a manner dependent on the presence of mesenchyme. Interestingly, FGF9 stimulation inhibited enamel formation in isolated enamel epithelia and DESC spheres. Further investigation revealed that FGF9 supports DESC survival and promotes amelogenesis by stimulating the secretion of FGF3 and FGF10 in dental mesenchymal cells via the MAPK/ERK signaling pathway. CONCLUSIONS: Our study demonstrates that Fgf9 is essential for DESC survival and enamel formation. Fgf9 performs as a dual-directional regulator of the dental enamel epithelium, not only inhibiting DESC differentiation into ameloblasts to preserve the stemness of DESC, but also promoting ameloblast differentiation through epithelial-mesenchymal interactions.


Assuntos
Esmalte Dentário , Células Epiteliais , Fator 9 de Crescimento de Fibroblastos , Células-Tronco , Animais , Fator 9 de Crescimento de Fibroblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/genética , Camundongos , Esmalte Dentário/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Células Epiteliais/metabolismo , Incisivo/metabolismo , Sobrevivência Celular , Diferenciação Celular
2.
J Hazard Mater ; 478: 135478, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39137550

RESUMO

The microbially-mediated reduction processes have potential for the bioremediation of acid mine drainage (AMD), which represents a worldwide environment problem. However, we know little about the microbial interactions in anaerobic AMD sediments. Here we utilized genome-resolved metagenomics to uncover the nature of cooperative and competitive metabolic interactions in 90 AMD sediments across Southern China. Our analyses recovered well-represented prokaryotic communities through the reconstruction of 2625 population genomes. Functional analyses of these genomes revealed extensive metabolic handoffs which occurred more frequently in nitrogen metabolism than in sulfur metabolism, as well as stable functional redundancy across sediments resulting from populations with low genomic relatedness. Genome-scale metabolic modeling showed that metabolic competition promoted microbial co-occurrence relationships, suggesting that community assembly was dominated by habitat filtering in sediments. Notably, communities colonizing more extreme conditions tended to be highly competitive, which was typically accompanied with increased network complexity but decreased stability of the microbiome. Finally, our results demonstrated that heterotrophic Thermoplasmatota associated with ferric iron and sulfate reduction contributed most to the elevated levels of competition. Our study shed light on the cooperative and competitive metabolisms of microbiome in the hazardous AMD sediments, which may provide preliminary clues for the AMD bioremediation in the future.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos , Microbiota , Mineração , Sedimentos Geológicos/microbiologia , Bactérias/metabolismo , Bactérias/genética , China , Metagenômica , Ácidos/metabolismo , Interações Microbianas
3.
Int J Biol Sci ; 20(9): 3461-3479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993574

RESUMO

Bone-fat balance is crucial to maintain bone homeostasis. As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal stem cells (BMSCs) are delicately balanced for their differentiation commitment. However, the exact mechanisms governing BMSC cell fate are unclear. In this study, we discovered that fibroblast growth factor 9 (Fgf9), a cytokine expressed in the bone marrow niche, controlled bone-fat balance by influencing the cell fate of BMSCs. Histomorphology and cytodifferentiation analysis showed that Fgf9 loss-of-function mutation (S99N) notably inhibited bone marrow adipose tissue (BMAT) formation and alleviated ovariectomy-induced bone loss and BMAT accumulation in adult mice. Furthermore, in vitro and in vivo investigations demonstrated that Fgf9 altered the differentiation potential of BMSCs, shifting from osteogenesis to adipogenesis at the early stages of cell commitment. Transcriptomic and gene expression analyses demonstrated that FGF9 upregulated the expression of adipogenic genes while downregulating osteogenic gene expression at both mRNA and protein levels. Mechanistic studies revealed that FGF9, through FGFR1, promoted adipogenic gene expression via PI3K/AKT/Hippo pathways and inhibited osteogenic gene expression via MAPK/ERK pathway. This study underscores the crucial role of Fgf9 as a cytokine regulating the bone-fat balance in adult bone, suggesting that FGF9 is a potentially therapeutic target in the treatment of osteoporosis.


Assuntos
Fator 9 de Crescimento de Fibroblastos , Células-Tronco Mesenquimais , Osteoporose , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Células-Tronco Mesenquimais/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/genética , Camundongos , Osteoporose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Diferenciação Celular , Osteogênese/genética , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Camundongos Endogâmicos C57BL , Adipogenia , Tecido Adiposo/metabolismo
4.
Cancer Immunol Immunother ; 73(8): 143, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832955

RESUMO

This study investigates the role of USP47, a deubiquitinating enzyme, in the tumor microenvironment and its impact on antitumor immune responses. Analysis of TCGA database revealed distinct expression patterns of USP47 in various tumor tissues and normal tissues. Prostate adenocarcinoma showed significant downregulation of USP47 compared to normal tissue. Correlation analysis demonstrated a positive association between USP47 expression levels and infiltrating CD8+ T cells, neutrophils, and macrophages, while showing a negative correlation with NKT cells. Furthermore, using Usp47 knockout mice, we observed a slower tumor growth rate and reduced tumor burden. The absence of USP47 led to increased infiltration of immune cells, including neutrophils, macrophages, NK cells, NKT cells, and T cells. Additionally, USP47 deficiency resulted in enhanced activation of cytotoxic T lymphocytes (CTLs) and altered T cell subsets within the tumor microenvironment. These findings suggest that USP47 plays a critical role in modulating the tumor microenvironment and promoting antitumor immune responses, highlighting its potential as a therapeutic target in prostate cancer.


Assuntos
Linfócitos do Interstício Tumoral , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Microambiente Tumoral
5.
Cell Mol Life Sci ; 81(1): 108, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421455

RESUMO

Spermiogenesis is considered to be crucial for the production of haploid spermatozoa with normal morphology, structure and function, but the mechanisms underlying this process remain largely unclear. Here, we demonstrate that SPEM family member 2 (Spem2), as a novel testis-enriched gene, is essential for spermiogenesis and male fertility. Spem2 is predominantly expressed in the haploid male germ cells and is highly conserved across mammals. Mice deficient for Spem2 develop male infertility associated with spermiogenesis impairment. Specifically, the insufficient sperm individualization, failure of excess cytoplasm shedding, and defects in acrosome formation are evident in Spem2-null sperm. Sperm counts and motility are also significantly reduced compared to controls. In vivo fertilization assays have shown that Spem2-null sperm are unable to fertilize oocytes, possibly due to their impaired ability to migrate from the uterus into the oviduct. However, the infertility of Spem2-/- males cannot be rescued by in vitro fertilization, suggesting that defective sperm-egg interaction may also be a contributing factor. Furthermore, SPEM2 is detected to interact with ZPBP, PRSS21, PRSS54, PRSS55, ADAM2 and ADAM3 and is also required for their processing and maturation in epididymal sperm. Our findings establish SPEM2 as an essential regulator of spermiogenesis and fertilization in mice, possibly in mammals including humans. Understanding the molecular role of SPEM2 could provide new insights into future therapeutic treatment of human male infertility and development of non-hormonal male contraceptives.


Assuntos
Infertilidade Masculina , Espermatogênese , Testículo , Animais , Masculino , Camundongos , Fertilinas , Infertilidade Masculina/genética , Mamíferos , Sêmen , Interações Espermatozoide-Óvulo , Espermatogênese/genética , Testículo/metabolismo
6.
J Phys Condens Matter ; 36(20)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38295441

RESUMO

Van der Waals (vdW) gap is a significant feature that distinguishes vdW magnets from traditional magnets. Manipulating the magnetic properties by changing the vdW gap has been hot topic in condensed matter research. Here we report a re-emerging magnetic order induced by pressure in a correlated vdW antiferromagnetic insulator NiPS3. It is found that the interlayer magnetoresistance (MR) nearly vanishes at the critical pressure where the crystal structure transforms fromC2/mphase to the slidingC2/mphase. On further compression within the slidingC2/mphase, a substantially enhanced MR emerges from low temperature associated with an insulator-to-metal transition, indicating a metallic antiferromagnetic phase. The enhanced re-emerging MR in slidingC2/mphase can be ascribed to the increasing magnetic interaction between neighboring layers due to the vdW gap narrowing. Our results provide important experimental clues for understanding the pressure effects on magnetism in correlated layered materials.

7.
Nature ; 621(7979): 493-498, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437603

RESUMO

Although high-transition-temperature (high-Tc) superconductivity in cuprates has been known for more than three decades, the underlying mechanism remains unknown1-4. Cuprates are the only unconventional superconductors that exhibit bulk superconductivity with Tc above the liquid-nitrogen boiling temperature of 77 K. Here we observe that high-pressure resistance and mutual inductive magnetic susceptibility measurements showed signatures of superconductivity in single crystals of La3Ni2O7 with maximum Tc of 80 K at pressures between 14.0 GPa and 43.5 GPa. The superconducting phase under high pressure has an orthorhombic structure of Fmmm space group with the [Formula: see text] and [Formula: see text] orbitals of Ni cations strongly mixing with oxygen 2p orbitals. Our density functional theory calculations indicate that the superconductivity emerges coincidently with the metallization of the σ-bonding bands under the Fermi level, consisting of the [Formula: see text] orbitals with the apical oxygen ions connecting the Ni-O bilayers. Thus, our discoveries provide not only important clues for the high-Tc superconductivity in this Ruddlesden-Popper double-layered perovskite nickelates but also a previously unknown family of compounds to investigate the high-Tc superconductivity mechanism.

8.
Nat Commun ; 14(1): 1519, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934098

RESUMO

The presence of the van der Waals gap in layered materials creates a wealth of intriguing phenomena different to their counterparts in conventional materials. For example, pressurization can generate a large anisotropic lattice shrinkage along the stacking orientation and/or a significant interlayer sliding, and many of the exotic pressure-dependent properties derive from these mechanisms. Here we report a giant piezoresistivity in pressurized ß'-In2Se3. Upon compression, a six-orders-of-magnitude drop of electrical resistivity is obtained below 1.2 GPa in ß'-In2Se3 flakes, yielding a giant piezoresistive gauge πp of -5.33 GPa-1. Simultaneously, the sample undergoes a semiconductor-to-semimetal transition without a structural phase transition. Surprisingly, linear dichroism study and theoretical first principles modelling show that these phenomena arise not due to shrinkage or sliding at the van der Waals gap, but rather are dominated by the layer-dependent atomic motions inside the quintuple layer, mainly from the shifting of middle Se atoms to their high-symmetric location. The atomic motions link to both the band structure modulation and the in-plane ferroelectric dipoles. Our work not only provides a prominent piezoresistive material but also points out the importance of intralayer atomic motions beyond van der Waals gap.

9.
Exp Eye Res ; 230: 109448, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967081

RESUMO

Uveal melanoma (UM), the most frequent primary intraocular tumor in adults, has poor prognosis. High C-C motif chemokine ligand 18 (CCL18) has been detected in various tumors and is closely correlated with patients' clinicopathological characteristics. However, the essential role of CCL18 in UM remains unclear. Therefore, this study aimed to explore the prognostic value of CCL18 in UM. Uveal melanoma cells (M17) were transfected with pcDNA3.1-CCL18 si-RNA using Lipofectamine™ 2000. Cell growth and invasion abilities were measured through Cell Counting Kit-8 assay and invasion assay. RNA expression data and clinical and histopathological details were downloaded from the UM in The Cancer Genome Atlas (TCGA-UM) and GSE22138 datasets, which were defined as the training and validation cohorts, respectively. Univariate and multivariate Cox regression analyses were performed to identify significant prognostic biomarkers. The coefficients of these significant biomarkers generated by multivariate Cox proportional hazard regression analysis were used to establish a risk score formula. Functional enrichment analyses were also carried out. We found that downregulated CCL18 inhibits M17 cell growth and invasion in vitro. CCL18 may affect UM progression by altering C-C motif receptor 8 related pathways. Higher CCL18 expression was associated with worse clinical outcomes and tumor-specific death in the TCGA-UM dataset. Based on the coefficients obtained from the Cox proportional hazard regression analysis, a CCL18-related prognostic signature formula was constructed as follows: risk score = 0.05590 × age +2.43437 × chromosome 3 status +0.39496 × ExpressionCCL18. Notably, in this formula, the normal chromosome 3 was coded as 0, whereas the chromosome 3 loss was coded as 1. Each patient was assigned to either low-risk or high-risk groups using the median cut-off in the training cohort. High-risk patients survived for a shorter time than low-risk patients. The time-dependent and multivariate receiver operating characteristic curves showed promising diagnostic efficacy. Multivariate Cox regression analysis demonstrated the potential of this CCL18-related signature as an independent prognostic indicator. These results were validated using the GSE22138 dataset. In addition, in both TCGA-UM and GSE22138 datasets, stratification of clinical correlations and survival analyses based on this signature indicated the involvement of clinical progression and survival outcome in UM. In the high-risk group, Gene Ontology analyses mainly indicated the enrichment of immune response pathways, such as the T cell activation, response to interferon-gamma, antigen processing and presentation, interferon-gamma-mediated signaling pathway, MHC protein complex, MHC class II protein complex, antigen binding, and cytokine binding. Meanwhile, Kyoto Encyclopedia of Genes and Genomes analyses showed enrichments of pathways in cancer, cell adhesion, cytokine-cytokine receptor interaction, chemokine signaling pathway, Th1 and Th2 cell differentiation, and chemokine signaling pathway. Moreover, single-sample gene set enrichment analysis demonstrated the enrichment of almost all immune cells and immune functions in the high-risk group. In summary, a new prognostic CCL18-related signature was successfully established using the TCGA-UM dataset and validated using the GSE22138 dataset with meaningful predictive and diagnostic efficacies. This signature could serve as an independent and promising prognostic biomarker for patients with UM.


Assuntos
Quimiocinas , Interferon gama , Adulto , Humanos , Pré-Escolar , Ligantes , Citocinas , Prognóstico , Quimiocinas CC
10.
J Hazard Mater ; 447: 130774, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36641850

RESUMO

Acid mine drainage (AMD) is a worldwide environmental problem, yet bioremediation is hampered by a limited knowledge of the reductive microbial processes in the AMD ecosystem. Here, we generate extensive metagenome and geochemical datasets to investigate how microbial populations and metabolic capacities driving major element cycles are structured in a highly stratified, AMD overlaying tailings environment. The results demonstrated an explicit depth-dependent differentiation of microbial community composition and function profiles between the surface and deeper tailings layers, paralleling the dramatic shifts in major physical and geochemical properties. Specifically, key genes involved in sulfur and iron oxidation were significantly enriched in the surface tailings, whereas those associated with reductive nitrogen, sulfur, and iron processes were enriched in the deeper layers. Genome-resolved metagenomics retrieved 406 intermediate or high-quality genomes spanning 26 phyla, including major new groups (e.g., Patescibacteria and DPANN). Metabolic models involving nitrogen, sulfur, iron, and carbon cycles were proposed based on the functional potentials of the abundant microbial genomes, emphasizing syntrophy and the importance of lesser-known taxa in the degradation of complex carbon compounds. These results have implications for in situ AMD bioremediation.


Assuntos
Metagenômica , Microbiota , Ácidos , Ferro , Metagenoma , Nitrogênio/metabolismo , Enxofre
11.
Reprod Sci ; 30(1): 145-168, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471551

RESUMO

Our previous studies have reported that a putative trypsin-like serine protease, PRSS37, is exclusively expressed in testicular germ cells during late spermatogenesis and essential for sperm migration from the uterus into the oviduct and sperm-egg recognition via mediating the interaction between PDILT and ADAM3. In the present study, the global proteome profiles of wild-type (wt) and Prss37-/- mice in testis and sperm were compared employing data independent acquisition (DIA) technology. Overall, 2506 and 459 differentially expressed proteins (DEPs) were identified in Prss37-null testis and sperm, respectively, when compared to control groups. Bioinformatic analyses revealed that most of DEPs were related to energy metabolism. Of note, the DEPs associated with pathways for the catabolism such as glucose via glycolysis, fatty acids via ß-oxidation, and amino acids via oxidative deamination were significantly down-regulated. Meanwhile, the DEPs involved in the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation (OXPHOS) were remarkably decreased. The DIA data were further confirmed by a markedly reduction of intermediate metabolites (citrate and fumarate) in TCA cycle and terminal metabolite (ATP) in OXPHOS system after disruption of PRSS37. These outcomes not only provide a more comprehensive understanding of the male fertility of energy metabolism modulated by PRSS37 but also furnish a dynamic proteomic resource for further reproductive biology studies.


Assuntos
Proteômica , Serina Proteases , Testículo , Animais , Feminino , Masculino , Camundongos , Metabolismo Energético , Isomerases de Dissulfetos de Proteínas/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Serina Proteases/deficiência , Serina Proteases/genética , Camundongos Knockout
12.
Biology (Basel) ; 11(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421382

RESUMO

Serine-threonine kinase 10 (STK10) is a member of the STE20/p21-activated kinase (PAK) family and is predominantly expressed in immune organs. Our previous reports suggested that STK10 participates in the growth and metastasis of prostate cancer via in vitro and in vivo data. However, the correlation between STK10 and the tumor microenvironment (TME) remains unclear. In this study, we assessed the relationship between STK10 and the immune cells in the tumor microenvironment of prostate cancer through bioinformatic analysis, and investigated the role of Stk10 in tumor growth using an Stk10 knockout mouse model. The results showed that STK10 is significantly associated with the tumor-infiltrating immune cells including lymphocytes, neutrophils, macrophages and dendritic cells. The target deletion of host Stk10 results in increased tumor growth, due to decreased activated/effector cytotoxic T lymphocytes (CTLs) and increased vessel density in the TME. In conclusion, we demonstrate that host Stk10 is involved in the host anti-tumor response by modulating the activated tumor-infiltrated CTLs and angiogenesis.

13.
Neuroscience ; 503: 131-145, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115515

RESUMO

Adhesion G protein-coupled receptor A1 (ADGRA1) belongs to the G protein-coupled receptor (GPCR) family, and its physiological function remains largely unknown. We found that Adgra1 is highly and exclusively expressed in the brain, suggesting that Adgra1 may be involved in the regulation of neurological behaviors including anxiety, depression, learning and memory. To this end, we comprehensively analyzed the potential role of ADGRA1 in the neurobehaviors of mice by comparing Adgra1-/- and their wild-type (wt) littermates. We found that Adgra1-/- male but not female mice exhibited elevated anxiety levels in the open field, elevated plus maze, and light-dark box tests, with normal depression levels in the tail-suspension and forced-swim tests, and comparable learning and memory abilities in the Morris water maze, Y maze, fear condition, and step-down avoidance tests. Further studies showed that ADGRA1 deficiency resulted in higher dendritic branching complexity and spine density as evidenced by elevated expression levels of SYN and PSD95 in amygdalae of male mice. Finally, we found that PI3K/AKT/GSK-3ß and MEK/ERK in amygdalae of Adgra1-deficient male mice were aberrantly activated when compared to wt male mice. Together, our findings reveal an important suppressive role of ADGRA1 in anxiety control and synaptic function by regulating the PI3K/AKT/GSK-3ß and MEK/ERK pathways in amygdalae of male mice, implicating a potential, therapeutic application in novel anti-anxiety drug development.


Assuntos
Ansiolíticos , Fosfatidilinositol 3-Quinases , Animais , Masculino , Camundongos , Dendritos/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
14.
Am J Pathol ; 192(11): 1633-1646, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029802

RESUMO

Retinopathy of prematurity (ROP) is characterized by pathologic angiogenesis in retina, and remains a leading cause of blindness in children. Although enhanced extracellular adenosine is markedly increased in response to retinal hypoxia, adenosine acting at the A1 and A2A receptors has the opposite effect on pathologic angiogenesis. Herein, the oxygen-induced retinopathy (OIR) model of ROP was used to demonstrate that pharmacologic and genetic inactivation of CD73 (the key 5'-ectonucleotidase for extracellular generation of adenosine) did not affect normal retinal vasculature development but exacerbated intravitreal neovascularization at postnatal day (P) 17 and delayed revascularization at P21 of OIR. This exacerbated damage to retinal vessels by CD73 inactivation was associated with increased cellular apoptosis and microglial activation but decreased astrocyte function at P17 of OIR. Furthermore, pharmacologic blockade of equilibrative nucleoside transporter 1/2 (ENT1/2; bidirectional transport for controlling the balance of intracellular and extracellular adenosine) by 6-nitrobenzylthioinosine aggravated pathologic angiogenesis at P17 of OIR. Pharmacologic blockade of ENT1/2 and genetic inactivation of CD73 also aggravated avascular areas at the hyperoxia phase (P12) of OIR. Thus, disruption of CD73-derived extracellular adenosine or ENT1/2-mediated transport of adenosine flux across membrane aggravated the damage to retinal vessels. These findings support the role of adenosine as an endogenous protective regulator that limits oxygen-induced retinopathy. Thus, enhancing extracellular adenosine signaling represents a novel neuroprotection strategy for ROP by targeting CD73 and ENT1/2 activities.

15.
Biol Reprod ; 107(4): 1139-1154, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863763

RESUMO

Serine proteases (PRSS) constitute nearly one-third of all proteases, and many of them have been identified to be testis-specific and play significant roles during sperm development and male reproduction. PRSS54 is one of the testis-specific PRSS in mouse and human but its physiological function remains largely unclear. In the present study, we demonstrate in detail that PRSS54 exists not only in testis but also in mature sperm, exhibiting a change in protein size from 50 kDa in testis to 42 kDa in sperm. Loss of PRSS54 in mice results in male subfertility, acrosome deformation, defective sperm-zona penetration, and phenotypes of male subfertility and acrosome deformation can be rescued by Prss54 transgene. Ultrastructure analyses by transmission electronic microscopy further reveal various morphological abnormalities of Prss54-/- spermatids during spermiogenesis, including unfused vacuoles in acrosome, detachment and eccentrical localization of the acrosomal granules, and asymmetrical elongation of the nucleus. Subcellular localization of PRSS54 display that it appears in the acrosomal granule at the early phase of acrosome biogenesis, then extends along the inner acrosomal membrane, and ultimately presents in the acrosome region of the mature sperm. PRSS54 interacts with acrosomal proteins ZPBP1, ZPBP2, ACRBP, and ZP3R, and loss of PRSS54 affects the distribution of these proteins in testis and sperm, although their protein levels are largely unaffected. Moreover, Prss54-/- sperm are more sensitive to acrosome reaction inducers.


Assuntos
Acrossomo , Infertilidade Masculina , Acrossomo/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas do Ovo , Humanos , Infertilidade Masculina/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Morfogênese , Proteínas/metabolismo , Sêmen/metabolismo , Serina Endopeptidases/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo
16.
Hum Cell ; 35(4): 1071-1083, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35416622

RESUMO

Studies have indicated that RIG-I may act as a tumor suppressor and participate in the tumorigenesis of some malignant diseases. However, RIG-I induces distinct cellular responses via different downstream signaling pathways depending on the cell type. To investigate the biological function and underlying molecular mechanism of RIG-I in the tumorigenesis of melanoma, we constructed RIG-I knockout, RIG-I-overexpressing B16-F10 and RIG-I knockdown A375 melanoma cell lines, and analyzed the RIG-I-mediated change in the biological behavior of tumor cells in spontaneous and poly (I:C)-induced RIG-I activation. Cell proliferation, cell cycling, apoptosis and migration were detected by CCK-8 assay, BrdU incorporation assay, Annexin V-PI staining assay and Transwell assay, respectively. In vivo tumorigenicity was evaluated by tumor xenograft growth in nude mice and subsequently by Ki67 staining and TUNEL assays. Furthermore, Western blotting was utilized to explore the underlying mechanism of RIG-I in melanoma cells. Our data showed that RIG-I promotes apoptosis and inhibits proliferation by G1 phase cell cycle arrest in the melanoma cell lines. Mechanistically, RIG-I induced the phosphorylation of p38 MAPK and MAPK kinases MKK3 and MKK4. In conclusion, the current study demonstrated that RIG-I suppressed the development of melanoma by regulating the activity of the MKK/p38 MAPK signaling pathway, which is relevant to research on novel therapeutic targets for this malignant disease.


Assuntos
Proteína DEAD-box 58 , Melanoma , Quinases de Proteína Quinase Ativadas por Mitógeno , Receptores Imunológicos , Neoplasias Cutâneas , Animais , Apoptose/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Humanos , Melanoma/genética , Camundongos , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores Imunológicos/genética , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
J Phys Condens Matter ; 34(1)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34555819

RESUMO

The electronic and magnetic properties of the two-dimensional Ti3C2MXenes have attracted a lot of interests due to its potential applications. In this paper, Ti3C2TxMXenes and Mn-doped Ti3C2TxMXenes are synthesized and investigated. The experimental data shows that Mn2+ions are homogeneously and randomly intercalated between Ti3C2sheets as function terminals, which increase the interlayer distance between Ti3C2sheets and offer a mass of uncoupled magnetic moment. The temperature dependence of the electric resistivity of both samples show similar complex behavior although the resistivity increases dramatically as Mn doping. The inter-flake variable range hopping (VRH) dominates the low temperature electric transport behavior, while the inter-flake thermally activated hopping as well as the metallic intra-flake transport competing with the inter-flake VRH play important roles at high temperature. The increasing resistivity of the Mn-doped sample could be attributed to the increase of the interlayer distance and the enhancement of the localization of the transport electrons after Mn2+ions intercalation.

18.
Biol Rev Camb Philos Soc ; 96(6): 2771-2793, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288351

RESUMO

Phosphate-solubilizing microbes (PSMs) drive the biogeochemical cycling of phosphorus (P) and hold promise for sustainable agriculture. However, their global distribution, overall diversity and application potential remain unknown. Here, we present the first synthesis of their biogeography, diversity and utility, employing data from 399 papers published between 1981 and 2017, the results of a nationwide field survey in China consisting of 367 soil samples, and a genetic analysis of 12986 genome-sequenced prokaryotic strains. We show that at continental to global scales, the population density of PSMs in environmental samples is correlated with total P rather than pH. Remarkably, positive relationships exist between the population density of soil PSMs and available P, nitrate-nitrogen and dissolved organic carbon in soil, reflecting functional couplings between PSMs and microbes driving biogeochemical cycles of nitrogen and carbon. More than 2704 strains affiliated with at least nine archaeal, 88 fungal and 336 bacterial species were reported as PSMs. Only 2.59% of these strains have been tested for their efficiencies in improving crop growth or yield under field conditions, providing evidence that PSMs are more likely to exert positive effects on wheat growing in alkaline P-deficient soils. Our systematic genetic analysis reveals five promising PSM genera deserving much more attention.


Assuntos
Fosfatos , Microbiologia do Solo , Agricultura/métodos , Fósforo , Solo
19.
Exp Ther Med ; 22(2): 851, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34149897

RESUMO

Prostate cancer (PCa) is one of the most common types of cancer and is a serious threat to men's health due to the high rate of incidence and metastasis. However, the exact underlying pathology of this malignant disease has yet to be fully elucidated. The ezrin-radixin-moesin (ERM) family of proteins are associated with the development and metastasis of various types of cancer. Serine threonine kinase 10 (STK10) is an ERM kinase that is involved in the activation of ERM proteins and serves essential roles in the aggregation and adhesion of lymphocytes. To evaluate the functional roles of STK10 in the pathogenesis of PCa, a STK10-knockout (KO) DU145 PCa cell line was generated using the CRISPR-Cas9 gene editing system, and the effects of STK10 deletion on tumor biological behaviors were further analyzed. The present data suggested that STK10 KO promoted PCa cell proliferation by inhibiting p38 MAPK activation and suppressed migration primarily via the inhibition of p38 MAPK signaling and ERM protein activation. To the best of our knowledge, this is the first study to provide evidence that STK10 plays important roles in the proliferation and migration of PCa cells, which will be useful for further investigation into the pathogenesis of this disease.

20.
J Cell Sci ; 134(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34028541

RESUMO

A disintegrin and metalloproteinase 3 (ADAM3) is a sperm membrane protein critical for sperm migration from the uterus into the oviduct and sperm-egg binding in mice. Disruption of PRSS37 results in male infertility concurrent with the absence of mature ADAM3 from cauda epididymal sperm. However, how PRSS37 modulates ADAM3 maturation remains largely unclear. Here, we determine the PRSS37 interactome by GFP immunoprecipitation coupled with mass spectrometry in PRSS37-EGFP knock-in mice. Three molecular chaperones (CLGN, CALR3 and PDILT) and three ADAM proteins (ADAM2, ADAM6B and ADAM4) were identified to be interacting with PRSS37. Coincidently, five of them (except ADAM4) have been reported to interact with ADAM3 precursor and regulate its maturation. We further demonstrated that PRSS37 also interacts directly with ADAM3 precursor and its deficiency impedes the association between PDILT and ADAM3. This could contribute to improper translocation of ADAM3 to the germ cell surface, leading to ADAM3 loss in PRSS37-null mature sperm. The understanding of the maturation mechanisms of pivotal sperm plasma membrane proteins will pave the way toward novel strategies for contraception and the treatment of unexplained male infertility.


Assuntos
Infertilidade Masculina , Glicoproteínas de Membrana , Proteínas ADAM/genética , Animais , Epididimo , Feminino , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Isomerases de Dissulfetos de Proteínas , Serina Proteases , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA