Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29268, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638976

RESUMO

The establishment of a platelet-apheresis donor database may provide a feasible solution to improve the efficacy of platelet transfusion in patients with immune platelet transfusion refractoriness (PTR). This study aimed to establish HLA genotype database in Suzhou, to provide HLA-I compatible platelets for PTR patients to ensure the safety and effectiveness of platelet transfusions. We used a polymerase chain reaction sequence-based typing (PCR-SBT) method to establish the database by performing high-resolution HLA-A, -B, and -C genotyping on 900 platelet-apheresis donors. HLA-I antibody was detected in patients using a Luminex device, and HLA-I gene matching was performed by an HLA-Matchmaker. We found that the highest frequency of the HLA-A allele was A*11:01 (17.06 %), followed by A*24:02 (14.67 %) and A*02:01 (13.61 %). The highest frequency of the HLA-B allele was B*46:01 (9.78 %), followed by B*40:01 (8.39 %) and B*13:02 (33 %). After the detection of platelet antibodies in 74 patients with immune PTR, we found 30 HLA-A antibodies and 48 HLA-B antibodies, and there were a variety of high frequency antibodies whose alleles were low in the donor database, such as HLA-A*68:02, and B*57:01. After avoiding donor-specific antibodies (DSA) matching, 102 of 209 platelet-compatible transfusions were effective, resulting in an effective rate of 48.8 %, which significantly improved the efficacy of platelet transfusion. The establishment of a platelet donor database is of great significance to improve the therapeutic effect of platelet transfusion in patients with hematologic disorder, and save blood resources, and it is also the premise and guarantee of precise platelet transfusion.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38652598

RESUMO

OBJECTIVES: Patients with systemic lupus erythematosus (SLE) display heightened immune activation and elevated IgG autoantibody levels, indicating compromised regulatory T cell (Tregs) function. Our recent findings pinpoint CD8+ Tregs as crucial regulators within secondary lymphoid organs, operating in a NOX2-dependent mechanism. However, the specific involvement of CD8+ Tregs in SLE pathogenesis and the mechanisms underlying their role remain uncertain. METHODS: SLE and healthy individuals were enlisted to assess the quantity and efficacy of Tregs. CD8+CD45RA+CCR7+ Tregs were generated ex vivo, and their suppressive capability was gauged by measuring pZAP70 levels in targeted T cells. Notch1 activity was evaluated by examining activated Notch1 and HES1, with manipulation of Notch1 accomplished with Notch inhibitor DAPT, Notch1 shRNA, and Notch1-ICD. To create humanized SLE chimeras, immune-deficient NSG mice were engrafted with PBMCs from SLE patients. RESULTS: We observed a reduced frequency and impaired functionality of CD8+ Tregs in SLE patients. There was a downregulation of NOX2 in CD8+ Tregs from SLE patients, leading to a dysfunction. Mechanistically, the reduction of NOX2 in SLE CD8+ Tregs occurred at a post-translational level rather than at the transcriptional level. SLE CD8+ Tregs exhibited heightened Notch1 activity, resulting in increased expression of STUB1, an E3 ubiquitin ligase that binds to NOX2 and facilitates its ubiquitination. Consequently, restoring NOX2 levels and inhibiting Notch1 activity could alleviate the severity of the disease in humanized SLE chimeras. CONCLUSION: Notch1 is the cell-intrinsic mechanism underlying NOX2 deficiency and CD8+ Treg dysfunction, serving as a therapeutic target for clinical management of SLE.

3.
Transfus Med Hemother ; 51(1): 32-40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314240

RESUMO

Background: CD36 deficiency is closely associated with fetal/neonatal alloimmune thrombocytopenia, platelet transfusion refractoriness, and other hemorrhage disorders, particularly in Asian and African populations. There is a clinical need for rapid and high-throughput methods of platelet CD36 (pCD36) phenotyping to improve the availability of CD36 typing of donors and assist clinical blood transfusions for patients with anti-CD36 antibodies. Such methods can also support the establishment of databases of pCD36-negative phenotypes. Study Design and Methods: A sandwich enzyme-linked immunosorbent assay (ELISA) for CD36 phenotyping of human platelets was developed using anti-CD36 monoclonal antibodies. The reliability of the assay was evaluated by calculating the intra-assay and inter-assay coefficients of variation (CV). A total of 1,691 anticoagulant whole blood samples from healthy blood donors were randomly selected. PCD36 expression was measured using a sandwich ELISA. PCD36 deficiency was confirmed by flow cytometry (FC). Mutations underlying pCD36 deficiency were identified using polymerase chain reaction sequence-based typing (PCR-SBT). Results: The sandwich ELISA for pCD36 phenotyping had high reliability (intra-assay CV, 2.1-4.8%; inter-assay CV, 2.3-5.2%). The sandwich ELISA was used to screen for CD36 expression on platelets isolated from 1,691 healthy blood donors. Of these, 36 samples were pCD36-negative. FC demonstrated absence of CD36 expression on monocytes in three of the 36 cases. In the present study population, the frequency of CD36 deficiency was 2.13% (36/1,691), of which 0.18% (3/1,691) was type I deficiency and 1.95% (33/1,691) was type II deficiency. In addition, we used PCR-SBT to characterize the gene mutations in exons 3-14 of the CD36 gene in 27 cases of CD36 deficiency and discovered 10 types of mutations in 13 pCD36-negative samples. Conclusion: The present study describes the development and characterization of a highly reliable sandwich ELISA for high-throughput screening for pCD36 expression. This novel method is feasible for clinical applications and provides a useful tool for the establishment of databases of pCD36-negative phenotype donors.

4.
Technol Cancer Res Treat ; 22: 15330338231202650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37968933

RESUMO

Background: The tumor microenvironment and tumor immunity have become the focus of research on tumor diagnosis and treatment. Lymphocyte activation gene-3 (LAG-3, CD223) is a newly discovered immunosuppressive receptor that is abnormally expressed in various tumor microenvironments and plays an important role as an immune checkpoint in the tumor immune response. Objective: We developed a novel enzyme-linked immunosorbent assay kit, examined the levels of soluble LAG-3 (sLAG-3) in the serum of patients with cervical cancer, and identified new biomarkers for cervical cancer development. Methods: To investigate the potential biological function of sLAG-3, we generated and characterized 2 novel anti-LAG-3 monoclonal antibodies, namely 4F4 and 4E12. We performed western blotting, immunofluorescence, and immunohistochemistry using hybridoma technology and an enzyme-linked immunosorbent assay kit for detecting human sLAG-3 based on an improved double-antibody sandwich enzyme-linked immunosorbent assay method. The stability and sensitivity of these kits were also assessed. Results: We screened and characterized 2 novel monoclonal antibodies against human LAG-3. The enzyme-linked immunosorbent assay kit also includes a wide range of tests. Using this enzyme-linked immunosorbent assay system, we found that the expression level of sLAG-3 in the peripheral blood of patients with cervical cancer significantly decreased as the disease progressed (P < .0001). Multivariate logistic regression analysis revealed that low sLAG-3 expression was an independent predictor of cervical cancer and related diseases (P < .05). Furthermore, receiver operating characteristic curve analysis showed that sLAG-3 had diagnostic value for cervical cancer metastasis (P < .0001). Conclusion: These data suggest that sLAG-3 is a potential biomarker for cervical cancer development. Therefore, this kit has a certain application value in the diagnosis of cervical cancer.


Assuntos
Anticorpos Monoclonais , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico , Relevância Clínica , Ensaio de Imunoadsorção Enzimática/métodos , Western Blotting , Biomarcadores , Microambiente Tumoral
5.
Immun Ageing ; 20(1): 44, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649035

RESUMO

BACKGROUND: Fasting is known to influence the immune functions of leukocytes primarily by regulating their mobilization and redistribution between the bone marrow and the peripheral tissues or circulation, in particular via relocalization of leukocytes back in the bone marrow. However, how the immune system responds to the increased risk of invasion by infectious pathogens with fewer leukocytes in the peripheral blood during fasting intervention remains an open question. RESULTS: We used proteomic, biochemical and flow cytometric tools to evaluate the impact of short-term intensive fasting (STIF), known as beego, on red blood cells by profiling the cells from the STIF subjects before and after 6 days of fasting and 6 days of gradual refeeding. We found that STIF, by triggering the activation of the complement system via the complement receptor on the membrane of red blood cells, boosts fairly sustainable function of red blood cells in immune responses in close relation to various pathogens, including viruses, bacteria and parasites, particularly with the pronounced capacity to defend against SARS-CoV-2, without compromising their oxygen delivery capacity and viability. CONCLUSION: STIF fosters the immune function of red blood cells and therefore, it may be considered as a nonmedical intervention option for the stronger capacity of red blood cells to combat infectious diseases.

6.
Aging Cell ; 22(8): e13889, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37226323

RESUMO

The bone marrow niche maintains hematopoietic stem cell (HSC) homeostasis and declines in function in the physiologically aging population and in patients with hematological malignancies. A fundamental question is now whether and how HSCs are able to renew or repair their niche. Here, we show that disabling HSCs based on disrupting autophagy accelerated niche aging in mice, whereas transplantation of young, but not aged or impaired, donor HSCs normalized niche cell populations and restored niche factors in host mice carrying an artificially harassed niche and in physiologically aged host mice, as well as in leukemia patients. Mechanistically, HSCs, identified using a donor lineage fluorescence-tracing system, transdifferentiate in an autophagy-dependent manner into functional niche cells in the host that include mesenchymal stromal cells and endothelial cells, previously regarded as "nonhematopoietic" sources. Our findings thus identify young donor HSCs as a primary parental source of the niche, thereby suggesting a clinical solution to revitalizing aged or damaged bone marrow hematopoietic niche.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Camundongos , Animais , Células Endoteliais , Nicho de Células-Tronco/fisiologia , Células-Tronco Hematopoéticas , Células da Medula Óssea , Hematopoese/fisiologia
7.
Front Immunol ; 14: 1157731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006245

RESUMO

Background: Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease mainly mediated by IgG autoantibody. While follicular helper T (Tfh) cells are crucial for supporting IgG autoantibody generation in human SLE, underlying mechanisms for Tfh cell mal-differentiation remain unclear. Methods: In total, 129 SLE patients and 37 healthy donors were recruited for this study. Circulating leptin was determined by ELISA from patients with SLE and healthy individuals. CD4 T cells isolated from SLE patients and healthy donors were activated with anti-CD3/CD28 beads under cytokine-unbiased conditions in the presence or absence of recombinant leptin protein, followed by detection for Tfh cell differentiation by quantifying intracellular transcription factor Bcl-6 and cytokine IL-21. AMPK activation was assessed by analyzing phosphor-AMPK using phosflow cytometry and immunoblots. Leptin receptor expression was determined using flow cytometry and its overexpression was achieved by transfection with an expression vector. Humanized SLE chimeras were induced by injecting patients' immune cells into immune-deficient NSG mice and used for translational studies. Results: Circulating leptin was elevated in patients with SLE, inversely associated with disease activity. In healthy individuals, leptin efficiently inhibited Tfh cell differentiation through inducing AMPK activation. Meanwhile, leptin receptor deficiency was a feature of CD4 T cells in SLE patients, impairing the inhibitory effect of leptin on the differentiation of Tfh cells. As a result, we observed the coexistence of high circulating leptin and increased Tfh cell frequencies in SLE patients. Accordingly, overexpression of leptin receptor in SLE CD4 T cells abrogated Tfh cell mal-differentiation and IgG anti-dsDNA generation in humanized lupus chimeras. Conclusion: Leptin receptor deficiency blocks the inhibitory effect of leptin on SLE Tfh cell differentiation, serving as a promising therapeutic target for lupus management.


Assuntos
Lúpus Eritematoso Sistêmico , Linfócitos T Auxiliares-Indutores , Humanos , Animais , Camundongos , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Leptina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Autoanticorpos , Imunoglobulina G/metabolismo
9.
ACS Omega ; 7(39): 35297-35304, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211073

RESUMO

The development of immunosensing assays for in vitro diagnostics has attracted great attention in recent years. Various substrate materials and immobilization methods of biomolecules were exploited for immunosensors, but their bioactivity and longevity have been facing serious challenges. To address this limitation, we investigated a natural silk cocoon membrane as immunosensing substrate material. By using its intrinsic properties, the target biomolecules were immobilized on the membrane through directional immunoaffinity recognition. The silk cocoon membrane-based immunosensor showed great potential for both qualitative and quantitative immunoassays, through naked-eye observation or analyzing the change in red color intensity, respectively. The immunosensor exhibited significant detection capability for anti-D (titer 1:1024) sensitized red blood cells. The colorimetric responses of concentrations ranged from 1 µg/mL to 1 ng/mL, and the detection limit for anti-D was 3.4 ng/mL. The immunosensor also showed excellent stability for the immobilized antibodies when stored at 4 and 25 °C; the bioactivity remained unchanged or slightly declined within 40 weeks. Even at 37 °C, the bioactivity began to decline after 12 weeks. This current work highlights the potential of using the natural silk cocoon membrane as a substrate for a versatile and thermally stable immunosensing platform for application in immunoassays.

10.
Arthritis Rheumatol ; 74(7): 1235-1244, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35212196

RESUMO

OBJECTIVE: Takayasu arteritis (TA) is a major type of large vessel vasculitis characterized by progressive inflammation in vascular layers. In our recent study we identified a central role of mechanistic target of rapamycin (mTOR) hyperactivity in proinflammatory T cell differentiation in TA. This study was undertaken to explore potential mechanisms underpinning T cell-intrinsic mTOR hyperactivity and vascular inflammation in TA, with a focus on Notch-1. METHODS: Notch-1 expression and activity was determined according to Notch-1, activated Notch-1, and HES-1 levels. We detected mTOR activity with intracellular expression of phosphorylated ribosomal protein S6. Differentiation of proinflammatory T cells was analyzed by detecting Th1 and Th17 lineage-determining transcription factors. The function of Notch-1 was evaluated using γ-secretase inhibitor DAPT and gene knockdown using a short hairpin RNA (shRNA) strategy. We performed our translational study using humanized NSG mouse chimeras in which human vasculitis was induced using immune cells from TA patients. RESULTS: CD4+ T cells from TA patients exerted Notch-1high , leading to mTOR hyperactivity and spontaneous maldifferentiation of Th1 cells and Th17 cells. Blockade of Notch-1 using DAPT and Notch-1 shRNA efficiently abrogated mTOR complex 1 (mTORC1) activation and proinflammatory T cell differentiation. Mechanistically, Notch-1 promoted mTOR expression, interacted with mTOR, and was associated with lysosomal localization of mTOR. Accordingly, systemic administration of DAPT and CD4+ T cell-specific gene knockdown of Notch-1 could alleviate vascular inflammation in humanized TA chimeras. CONCLUSION: Expression of Notch-1 is elevated in CD4+ T cells from TA patients, resulting in mTORC1 hyperactivity and proinflammatory T cell differentiation. Targeting Notch-1 is a promising therapeutic strategy for the clinical management of TA.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Receptor Notch1 , Arterite de Takayasu , Animais , Humanos , Inflamação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , RNA Interferente Pequeno , Receptor Notch1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Arterite de Takayasu/metabolismo
11.
Analyst ; 146(21): 6450-6454, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34595488

RESUMO

Ferric(III) ions (Fe3+) are one of the most abundant metal ions in environmental and biological systems. The determination of Fe3+ has attracted great attention for healthcare concerns. In this work, we have developed a novel fluorescence method for the sensing and intracellular imaging of Fe3+ based on the prepared red-emissive carbon nanodots. The nanoprobes are synthesized via a microwave method using ammonium fluoride and o-phenylenediamine as carbon precursors, which exhibit excellent optical properties and low toxicity. More importantly, the carbon nanodots show high selectivity towards Fe3+ against other interfering ions. The sensitivity is also high with the limit of detection as low as 0.05 µM. Meanwhile, the carbon nanodots have been successfully used for fluorescence imaging of cells and could be quenched by intracellular Fe3+. These results suggest that the red-emissive carbon nanodots have diverse potential utilities in biomedical fields.


Assuntos
Carbono , Pontos Quânticos , Corantes Fluorescentes/toxicidade , Íons , Ferro , Pontos Quânticos/toxicidade
12.
Anal Chim Acta ; 1165: 338543, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-33975698

RESUMO

MicroRNAs (miRNAs) play key regulatory roles in a number of biological processes, which act as critical biomarkers for clinical diagnosis. There are urgent needs to develop advanced tools for accurate and convenient analysis of miRNA in biological circumstances. In this study, an ultrasensitive electrochemical biosensor for miRNA assay is fabricated. Tetrahedral DNA modified gold nanoparticles tags are applied with optimized orientation, which are able to recruit a large number of electrochemical species for remarkable signal responses. Benefiting from the excellent amplification efficiency of the association of strand displacement amplification and catalyzed hairpin assembly, the established method shows ultrahigh sensitivity with the limit of detection as low as 10 aM. A wide linear range from 10-17 to 10-7 M is achieved. In addition, this method is capable to specifically discriminate interfering miRNAs with slightly different sequences. The successful assessment of miRNA levels in human serum samples also demonstrates good practical utility. Therefore, the proposed method has great potential to the applications of miRNA expression profiling and biological studies.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Catálise , DNA/genética , Técnicas Eletroquímicas , Ouro , Humanos , Limite de Detecção , MicroRNAs/genética
13.
Anal Chim Acta ; 1107: 23-29, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32200898

RESUMO

miRNAs are small non-coding RNAs for gene regulation, which serve as promising biomarkers for the diagnosis of certain diseases. In this contribution, we have proposed a convenient electrochemical biosensing strategy based on the interaction between DNA modified gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). In principle, citrate capped AuNPs and AgNPs can be co-decorated on the electrode successively. However, with the modification of DNA on AuNPs surface, a strong negative layer is formed. AuNPs@DNA modified electrode could then inhibit subsequent adsorption of AgNPs due to the electrostatic repulsion and steric hindrance effect. As a result, electrochemical response from AgNPs is significantly decreased. On the other hand, in the presence of target miRNA, DNA on AuNPs hybridizes with miRNA and can thus be cyclically digested by duplex-specific nuclease (DSN). Without the shield of DNA, AgNPs can be relaunched at the AuNPs modified electrode. By analyzing the silver stripping peak, highly sensitive detection of miRNA can be achieved. This biosensor exhibits the limit of detection as low as 0.62 fM and a broad linear range from 1 fM to 1 pM. It may hold great potential utility for miRNA assay in the applications of biomedical researches and early clinical diagnosis.


Assuntos
Técnicas Biossensoriais/métodos , Desoxirribonucleases/química , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , MicroRNAs/sangue , DNA/química , DNA/genética , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ouro/química , Humanos , Limite de Detecção , MicroRNAs/química , MicroRNAs/genética , Hibridização de Ácido Nucleico , Prata/química
14.
Front Physiol ; 10: 665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293430

RESUMO

Skeletal muscle atrophy is associated with pro-inflammatory cytokines. Salidroside is a biologically active ingredient of Rhodiola rosea, which exhibits anti-inflammatory property. However, there is little known about the effect of salidroside on denervation-induced muscle atrophy. Therefore, the present study aimed to determine whether salidroside could protect against denervation-induced muscle atrophy and to clarify potential molecular mechanisms. Denervation caused progressive accumulation of inflammatory factors in skeletal muscle, especially interleukin 6 (IL6) and its receptor, and recombinant murine IL6 (rmIL6) local infusion could induce target muscle atrophy, suggesting that denervation induced inflammation in target muscles and the inflammation may trigger muscle wasting. Salidroside alleviated denervation-induced muscle atrophy and inhibited the production of IL6. Furthermore, the inhibition of phosphorylation of signal transducer and activator of transcription 3 (STAT3), and the decreased levels of suppressor of cytokine signaling (SOCS3), muscle RING finger protein-1 (MuRF1), atrophy F-box (atrogin-1), microtubule-associated protein light chain 3 beta (LC3B) and PTEN-induced putative kinase (PINK1) were observed in denervated muscles that were treated with salidroside. Finally, all of these responses to salidroside were replicated in neutralizing antibody against IL6. Taken together, these results suggest that salidroside alleviates denervation-induced inflammation response, thereby inhibits muscle proteolysis and muscle atrophy. Therefore, it was assumed that salidroside might be a potential therapeutic candidate to prevent muscle wasting.

15.
Arthritis Res Ther ; 21(1): 92, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30971291

RESUMO

BACKGROUND: This study aimed to explore the molecular mechanism and clinical relevance of iguratimod in the regulation of human B cell terminal differentiation. METHODS: An in vitro human antibody-secreting cell (ASC) differentiation system was established to test the effect of iguratimod. B cell phenotype and key transcription factors (TFs) relevant to ASC differentiation were analyzed through flow cytometry and qPCR. The COX-2 activity was measured by enzyme immunoassay (EIA). RNA sequencing was used to identify potential targets of iguratimod. We enrolled six treatment-naive rheumatoid arthritis (RA) patients whose blood samples were collected for phenotypic and molecular studies along with 12-week iguratimod monotherapy. RESULTS: Iguratimod inhibited human ASC generation without affecting B cell activation and proliferation. Iguratimod showed only weak COX-2 activity. Gene set enrichment analysis (GSEA) identified that protein kinase C (PKC) pathway was targeted by iguratimod which was confirmed by PKC activity detection. Furthermore, early growth response 1 (EGR1), a target of PKC and a non-redundant TF for ASC differentiation, was found to be the most downregulated gene in iguratimod-treated B cells. Lastly, iguratimod monotherapy decreased peripheral ASCs and was associated with improved disease activity. The expression of major ASC-related TFs, including EGR1, was similarly downregulated in patient blood samples. CONCLUSIONS: Iguratimod inhibits ASC differentiation both in vitro and in RA patients. Our study suggests that PKC/EGR1 axis, rather than COX-2, is critically involved in the inhibitory effect by iguratimod on human ASC differentiation. Iguratimod could have a broader application to treat B cell-related autoimmune diseases in clinics.


Assuntos
Antirreumáticos/farmacologia , Linfócitos B/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Cromonas/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/antagonistas & inibidores , Proteína Quinase C/antagonistas & inibidores , Sulfonamidas/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/sangue , Artrite Reumatoide/tratamento farmacológico , Linfócitos B/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Cromonas/uso terapêutico , Proteína 1 de Resposta de Crescimento Precoce/sangue , Humanos , Proteína Quinase C/sangue , Sulfonamidas/uso terapêutico
16.
Nat Commun ; 10(1): 1015, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833559

RESUMO

Candida albicans can switch from commensal to pathogenic mode, causing mucosal or disseminated candidiasis. The host relies on pattern-recognition receptors including Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) to sense invading fungal pathogens and launch immune defense mechanisms. However, the complex interplay between fungus and host innate immunity remains incompletely understood. Here we report that C. albicans upregulates expression of a small secreted cysteine-rich protein Sel1 upon encountering limited nitrogen and abundant serum. Sel1 activates NF-κB and MAPK signaling pathways, leading to expression of proinflammatory cytokines and chemokines. Comprehensive genetic and biochemical analyses reveal both TLR2 and TLR4 are required for the recognition of Sel1. Further, SEL1-deficient C. albicans display an impaired immune response in vivo, causing increased morbidity and mortality in a bloodstream infection model. We identify a critical component in the Candida-host interaction that opens a new avenue to tackle Candida infection and inflammation.


Assuntos
Candida albicans/patogenicidade , Candidíase/imunologia , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Proteínas com Domínio LIM/imunologia , Proteínas com Domínio LIM/metabolismo , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Animais , Proteínas de Transporte/genética , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Imunidade Inata , Inflamação/imunologia , Proteínas com Domínio LIM/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Alinhamento de Sequência , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptores Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA