Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(14): 8214-8224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557103

RESUMO

The emerging mycotoxins enniatins (ENNs) and the traditional mycotoxin deoxynivalenol (DON) often co-contaminate various grain raw materials and foods. While the liver is their common target organ, the mechanism of their combined effect remains unclear. In this study, the combined cytotoxic effects of four ENNs (ENA, ENA1, ENB, and ENB1) with DON and their mechanisms were investigated using the HepG2 cell line. Additionally, a population exposure risk assessment of these mycotoxins was performed by using in vitro experiments and computer simulations. The results showed that only ENA at 1/4 IC50 and ENB1 at 1/8 IC50 coexposed with DON showed an additive effect, while ENB showed the strongest antagonism at IC50 (CI = 3.890). Co-incubation of ENNs regulated the signaling molecule levels which were disrupted by DON. Transcriptome analysis showed that ENB (IC50) up-regulated the PI3K/Akt/FoxO signaling pathway and inhibited the expression of apoptotic genes (Bax, P53, Caspase 3, etc.) via phosphorylation of FoxO, thereby reducing the cytotoxic effects caused by DON. Both types of mycotoxins posed serious health risks, and the cumulative risk of coexposure was particularly important for emerging mycotoxins.


Assuntos
Depsipeptídeos , Micotoxinas , Fosfatidilinositol 3-Quinases , Tricotecenos , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Hep G2 , Micotoxinas/toxicidade , Micotoxinas/análise
2.
Front Plant Sci ; 14: 1301117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046600

RESUMO

Developing and planting salt-tolerant plants has become a promising way to utilize saline-alkali land resources and ensure food security. Root-associated microbes of salt-tolerant plants have been shown to promote plant growth and alleviate high salt stress, yet very little is known about the salt resistance mechanisms of core microbes in different niches. This study characterized the microbial community structures, assembly processes, and functional profiles in four root-related compartments of two salt-tolerant plants by amplicon and shotgun metagenomic sequencing. The results showed that both plants significantly altered the microbial community structure of saline soils, with greater microbial alpha diversity in the rhizosphere or rhizoplane compared with bulk soils. Stochastic process dominated the microbial assembly processes, and the impact was stronger in Suaeda salsa than in S. glauca, indicating that S. salsa may have stronger resistance abilities to changing soil properties. Keystone species, such as Pseudomonas in the endosphere of S. glauca and Sphingomonas in the endosphere of S. salsa, which may play key roles in helping plants alleviate salt stress, were identified by using microbial co-occurrence network analysis. Furthermore, the microbiomes in the rhizoplane soils had more abundant genes involved in promoting growth of plants and defending against salt stress than those in bulk soils, especially in salt-tolerant S. salsa. Moreover, microbes in the rhizoplane of S. salsa exhibited higher functional diversities, with notable enrichment of genes involved in carbon fixation, dissimilar nitrate reduction to ammonium, and sulfite oxidation. These findings revealed differences and similarities in the microbial community assembly, functional profiles and keystone species closely related to salt alleviation of the two salt-tolerant plants. Overall, our study provides new insights into the ecological functions and varied strategies of rhizosphere microbes in different plants under salt stress and highlights the potential use of keystone microbes for enhancing salt resistance of plants.

3.
Plants (Basel) ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005709

RESUMO

Premature senescence is a common occurrence in rice production, and seriously affects rice plants' nutrient utilization and growth. A total of 120 recombinant inbred lines (RILs) were obtained from successive self-crossing of F12 generations derived from Huazhan and Nekken2. The superoxide dismutase (SOD) activity, malondialdehyde (MDA), content and catalase (CAT) activity related to the anti-senescence traits and enzyme activity index of rice were measured for QTL mapping using 4858 SNPs. Thirteen QTLs related to anti-senescence were found, among which the highest LOD score was 5.70. Eighteen anti-senescence-related genes were found in these regions, and ten of them differed significantly between the parents. It was inferred that LOC_Os01g61500, LOC_Os01g61810, and LOC_Os04g40130 became involved in the regulation of the anti-senescence molecular network upon upregulation of their expression levels. The identified anti-senescence-related QTLs and candidate genes provide a genetic basis for further research on the mechanism of the molecular network that regulates premature senescence.

5.
Lasers Med Sci ; 38(1): 203, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668791

RESUMO

Previous research has demonstrated the beneficial effect brought by transcranial photobiomodulation (tPBM). The present study is a further investigation of pulsed transcranial light delivery, from the perspective of wavelength, operation mode, and pulse frequency. A total of 56 healthy young adults (28 males and 28 females) were included in this randomized, sham-controlled experimental study. The wavelength of tPBM was 660 nm and 850 nm, and under each wavelength, subjects were randomly assigned to one of the following four treatments: (1) sham control; (2) continuous-wave (CW) tPBM; (3) pulsed-wave (PW) tPBM (40 Hz); and (4) PW tPBM (100 Hz). The tPBM duration was 8 min and the mean power density was fixed at 250 mW/cm2. Karolinska Sleepiness Scale (KSS) questionnaire, psychomotor vigilance task (PVT), and delayed match-to-sample (DMS) task were completed by subjects before and after the intervention to test whether PW tPBM produced distinct beneficial effects with measures of sleepiness, attention, and memory. 32-channel electroencephalography (EEG) signals were obtained from subjects before, during and after receiving tPBM or sham intervention. Paired sample T test showed that the KSS score, the number of correct responses of PVT, and DMS rate correct score (RCS) of PW tPBM groups improved significantly after intervention (p < 0.05). With regard to EEG analysis, paired one-way repeated ANOVA test showed that during the intervention of PW tPBM, the average power within the Gamma band was higher than the baseline (p < 0.05). Our study presented that PW tPBM could generate better beneficial cognitive effects and change brain electrical activity under certain circumstances.


Assuntos
Eletroencefalografia , Sonolência , Feminino , Masculino , Adulto Jovem , Humanos , Raios gama , Nível de Saúde , Frequência Cardíaca
6.
Parasit Vectors ; 16(1): 196, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301969

RESUMO

BACKGROUND: The structure of gut microbiota is highly complex. Insects have ubiquitous associations with intestinal symbiotic bacteria, which play essential roles. Thus, understanding how changes in the abundance of a single bacterium interfere with bacterial interactions in the insect's gut is important. METHODS: Here, we analyzed the effects of Serratia marcescens on the growth and development of housefly larvae using phage technology. We used 16S rRNA gene sequencing technology to explore dynamic diversity and variation in gut bacterial communities and performed plate confrontation assays to study the interaction between S. marcescens and intestinal microorganisms. Furthermore, we performed phenoloxidase activity assay, crawling assay, and trypan blue staining to explore the negative effects of S. marcescens on housefly larvae's humoral immunity, motility, and intestinal organization. RESULTS: The growth and development of housefly larvae were inhibited after feeding on S. marcescens, and their intestinal bacterial composition changed with increasing abundance of Providencia and decreasing abundance of Enterobacter and Klebsiella. Meanwhile, the depletion of S. marcescens by phages promoted the reproduction of beneficial bacteria. CONCLUSIONS: In our study, using phage as a tool to regulate the abundance of S. marcescens, we highlighted the mechanism by which S. marcescens inhibits the growth and development of housefly larvae and illustrated the importance of intestinal flora for larval development. Furthermore, by studying the dynamic diversity and variation in gut bacterial communities, we improved our understanding of the possible relationship between the gut microbiome and housefly larvae when houseflies are invaded by exogenous pathogenic bacteria.


Assuntos
Microbioma Gastrointestinal , Moscas Domésticas , Animais , Microbioma Gastrointestinal/genética , Larva/microbiologia , Serratia marcescens/genética , Moscas Domésticas/genética , RNA Ribossômico 16S/genética , Intestinos
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122876, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37210855

RESUMO

The derivatives of sulfur dioxide (HSO3-) formed in the biological environment play a vital role in the circulation system. Excessive SO2 derivatives will cause serious damage to the living system. Herein, a two-photon phosphorescent probe based on Ir(III) complex (named as Ir-CN) was designed and synthesized. Ir-CN is extremely selective and sensitive to SO2 derivatives with significant phosphorescent enhancement and increased phosphorescent lifetime. The detection limit of Ir-CN for SO2 derivatives reaches 0.17 µM. More importantly, Ir-CN preferentially accumulates in mitochondria, so bisulfite derivatives can be detected at subcellular level, which enriching the application of metal complex probe in biological detection. In addition, both single-photon and two-photon images can clearly show that Ir-CN is targeted to mitochondria. Benefits from its good biocompatibility, Ir-CN may be used as a reliable tool to detect SO2 derivatives in mitochondrion of living cells.


Assuntos
Corantes Fluorescentes , Irídio , Humanos , Fótons , Mitocôndrias , Dióxido de Enxofre , Células HeLa
8.
Colloids Surf B Biointerfaces ; 218: 112764, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35973238

RESUMO

Achieving superlubricity, a state of lubrication where friction nearly vanishes, has become one of the most promising approaches to combat friction-induced energy dissipation and medical device failure. Phospholipids are amphiphilic molecules comprising highly hydrophilic phosphatidylcholine head groups as well as hydrophobic hydrocarbon chains, When solubilized, phospholipids can readily self-assemble to form different structures such as bilayers and vesicles (liposomes). Recently, liposomes have been identified as excellent lubricants, especially in the boundary lubrication regime the most common lubrication status in the field of biotribology. In this review, we summarize recent progress in employing liposomes as key players for employing superlubricity in biomedical applications. The relationship between lipids and liposomes, manufacturing approaches, lubrication regimes, and regulation mechanisms of liposomes are discussed. Finally, we indicate possible future directions for the use of liposome-mediated superlubricity in biomedical applications.


Assuntos
Lipossomos , Fosfatidilcolinas , Lipossomos/química , Lubrificantes/química , Lubrificação , Fosfatidilcolinas/química , Fosfolipídeos
9.
Mater Today Bio ; 15: 100300, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35665231

RESUMO

Harnessing the inflammation and angiogenesis is extremely important in wound healing. In this study, we developed bioactive elastin-based hydrogels which can recruit and modulate the innate immune cells and accelerate angiogenesis in the wound site and subsequently improve wound regeneration. These hydrogels were formed by visible-light cross-linking of acryloyl-(polyethylene glycol)-N-hydroxysuccinimide ester modified elastin with methacrylated gelatin, in order to mimic dermal microenvironment. These hydrogels showed highly tunable mechanical properties, swelling ratios and enzymatic degradation profiles, with moduli within the range of human skin. To mimic the in vivo degradation of the elastin by elastase from neutrophils, in vitro co-culture of the hydrogels and neutrophils was conducted. The derived conditioned medium containing elastin derived peptides (EDP-conditioned medium) promoted the expression of both M1 and M2 markers in M1 macrophages in vitro. Additionally, the EDP-conditioned medium induced superior tube formation of endothelia cells in Matrigel. In mice wound model, these elastin-based hydrogels attracted abundant neutrophils and predominant M2 macrophages to the wound and supported their infiltration into the hydrogels. The outstanding immunomodulatory effect of the elastin-based hydrogels resulted in superior angiogenesis, collagen deposition and dermal regeneration. Hence, these elastin-based hydrogels can be a promising regenerative platform to accelerate wound repair.

10.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563187

RESUMO

Alginate lyase has received extensive attention as an important tool for oligosaccharide preparation, pharmaceutical production, and energy biotransformation. Noncatalytic module carbohydrate-binding modules (CBM) have a major impact on the function of alginate lyases. Although the effects of two different families of CBMs on enzyme characteristics have been reported, the effect of two combined CBM32s on enzyme function has not been elucidated. Herein, we cloned and expressed a new multimodular alginate lyase, VxAly7C, from Vibrioxiamenensis QY104, consisting of two CBM32s at N-terminus and a polysaccharide lyase family 7 (PL7) at C-terminus. To explore the function of CBM32s in VxAly7C, full-length (VxAly7C-FL) and two truncated mutants, VxAly7C-TM1 (with the first CBM32 deleted) and VxAly7C-TM2 (with both CBM32s deleted), were characterized. The catalytic efficiency of recombinant VxAly7C-TM2 was 1.82 and 4.25 times higher than that of VxAly7C-TM1 and VxAly7C-FL, respectively, indicating that CBM32s had an antagonistic effect. However, CBM32s improved the temperature stability, the adaptability in an alkaline environment, and the preference for polyG. Moreover, CBM32s contributed to the production of tri- and tetrasaccharides, significantly affecting the end-product distribution. This study advances the understanding of module function and provides a reference for broader enzymatic applications and further enzymatic improvement and assembly.


Assuntos
Alginatos , Polissacarídeo-Liases , Alginatos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/metabolismo , Especificidade por Substrato , Vibrio
11.
Photodermatol Photoimmunol Photomed ; 38(4): 311-321, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34907599

RESUMO

The use of light-emitting diode (LED)-based photodynamic therapies in the treatment of periodontitis is increasing because these modalities are effective, safe, and painless. They are not subject to acquired drug resistance or environmental issues and are associated with no complications when used appropriately. These light sources have also been used in combination with pharmacological measures to synergize their effects and optimize therapeutic outcomes. This review focuses on optical devices used in treating periodontitis and delineates the current applications of various methods, including their utility and efficacy. The application of LEDs in periodontology is described.


Assuntos
Anti-Infecciosos , Periodontite , Fotoquimioterapia , Antibacterianos , Humanos , Periodontite/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
12.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445107

RESUMO

Brown algae is a kind of renewable resource for biofuels production. As the major component of carbohydrate in the cell walls of brown algae, alginate can be degraded into unsaturated monosaccharide by exo-type alginate lyases, then converted into 4-deoxy-L-erythro-5-hexoseulose uronate (DEH) by a non-enzyme reaction, which is an important raw material for the preparation of bioethanol. In our research, a novel exo-type alginate lyase, VsAly7D, belonging to the PL7 family was isolated from marine bacterium Vibrio sp. QY108 and recombinantly expressed in Escherichia coli. The purified VsAly7D demonstrated the highest activity at 35 °C, whereas it still maintained 46.5% and 83.1% of its initial activity at 20 °C and 30 °C, respectively. In addition, VsAly7D exhibited the maximum activity under alkaline conditions (pH 8.0), with the simultaneously remaining stability between pH 8.0 and 10.0. Compared with other reported exo-type enzymes, VsAly7D could efficiently degrade alginate, poly-ß-D-mannuronate (polyM) and poly-α-L-guluronate (polyG) with highest specific activities (663.0 U/mg, 913.6 U/mg and 894.4 U/mg, respectively). These results showed that recombinant VsAly7D is a suitable tool enzyme for unsaturated alginate monosaccharide preparation and holds great promise for producing bioethanol from brown algae.


Assuntos
Alginatos/metabolismo , Polissacarídeo-Liases/metabolismo , Vibrio/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Ácido Glucurônico/metabolismo , Concentração de Íons de Hidrogênio , Monossacarídeos/metabolismo , Phaeophyceae/microbiologia
13.
Front Bioeng Biotechnol ; 9: 798147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004654

RESUMO

Reductive aminases (RedAms) for the stereoselective amination of ketones represent an environmentally benign and economically viable alternative to transition metal-catalyzed asymmetric chemical synthesis. Here, we report two RedAms from Aspergillus calidoustus (AcRedAm) and bacteria (BaRedAm) with NADPH-dependent features. The enzymes can synthesize a set of secondary amines using a broad range of ketone and amine substrates with up to 97% conversion. To synthesize the pharmaceutical ingredient (R)-rasagiline, we engineered AcRedAm through rational design to obtain highly stereoselective mutants. The best mutant Q237A from AcRedAm could synthesize (R)-rasagiline with >99% enantiomeric excess with moderate conversion. The features of AcRedAm and BaRedAm highlight their potential for further study and expand the biocatalytic toolbox for industrial applications.

14.
Front Microbiol ; 12: 798819, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069502

RESUMO

Carbohydrate-binding modules (CBMs), as an important auxiliary module, play a key role in degrading soluble alginate by alginate lyase, but the function on alginate gel has not been elucidated. Recently, we reported alginate lyase VxAly7B containing a CBM32 and a polysaccharide lyase family 7 (PL7). To investigate the specific function of CBM32, we characterized the full-length alginate lyase VxAly7B (VxAly7B-FL) and truncated mutants VxAly7B-CM (PL7) and VxAly7B-CBM (CBM32). Both VxAly7B-FL and native VxAly7B can spontaneously cleavage between CBM32 and PL7. The substrate-binding capacity and activity of VxAly7B-CM to soluble alginate were 0.86- and 1.97-fold those of VxAly7B-FL, respectively. Moreover, CBM32 could accelerate the expansion and cleavage of alginate gel beads, and the degradation rate of VxAly7B-FL to alginate gel beads was threefold that of VxAly7B-CM. Results showed that CBM32 is not conducive to the degradation of soluble alginate by VxAly7B but is helpful for binding and degradation of insoluble alginate gel. This study provides new insights into the function of CBM32 on alginate gel, which may inspire the application strategy of CBMs in insoluble substrates.

15.
Materials (Basel) ; 13(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256270

RESUMO

The author wishes to make the following correction to this paper [...].

16.
Int J Biol Macromol ; 164: 3762-3770, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871123

RESUMO

Chondroitinases degrade chondroitin sulfate (CS) into oligosaccharides, of which the biological activities have vital roles in various fields. Some chondroitinases in polysaccharide lyase family 8 (PL8) have been classified into four subfamilies (PL8_1, PL8_2, PL8_3, and PL8_4) based on their sequence similarity and substrate specificities. In this study, a gene, vpa_0049, was cloned from marine bacterium Vibrio sp. QY108. The encoded protein, Vpa_0049, did not belong to the four existing subfamilies in PL8 based on phylogenetic analysis. Vpa_0049 could degrade various glycosaminoglycans (CS-A, CS-B, CS-C, CS-D, and HA) into unsaturated disaccharides in an endolytic manner, which was different from PL8 lyases of four existing subfamilies. The maximum activity of Vpa_0049 on different glycosaminoglycan substrates appeared at 30-37 °C and pH 7.0-8.0 in the presence of NaCl. Vpa_0049 showed approximately 50% of maximum activity towards CS-B and HA at 0 °C. It was stable in alkaline conditions (pH 8.0-10.6) and 0-30 °C. Our study provides a new broad-substrate chondroitinase and presents an in-depth understanding of PL8.


Assuntos
Condroitina ABC Liase/genética , Clonagem Molecular , Polissacarídeo-Liases/genética , Vibrio/genética , Condroitina Liases/genética , Sulfatos de Condroitina/genética , Glicosaminoglicanos/genética , Oligossacarídeos/genética , Filogenia , Especificidade por Substrato , Vibrio/enzimologia
17.
Materials (Basel) ; 13(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882907

RESUMO

The element oxygen is expected to be a low-cost, strengthening element of titanium alloys due to its strong solid solution strengthening effect. High cycle fatigue behaviors of Ti-6Al-4V alloys with different oxygen contents (0.17%, 0.20%, 0.23% wt.%) were investigated in this paper. The results illustrated that Ti-6Al-4V-0.20O alloy possesses the highest fatigue strength and the lowest fatigue crack propagation rate. The fatigue fracture morphology verified that the fatigue cracks propagated transgranularly in both Ti-6Al-4V-0.17O and Ti-6Al-4V-0.20O alloys, and the fatigue cracks tended to extend intergranularly in the Ti-6Al-4V-0.23O alloy. The maximum nano-hardness varied from the <0001> direction to the <1¯21¯0> and <011¯0> directions with the increasing oxygen content, which suggested that the dominant slip system varied from prismatic slip to pyramidal slip. The number of the type dislocations increased with the oxygen content, which indicated that the number of the first-order pyramidal and the second-order pyramidal slip systems increased. The oxygen can significantly change the fatigue fracture mechanism of Ti-6Al-4V alloy: From transgranular fracture to intergranular fracture. These results are expected to provide valuable reference for the optimization of the composition and mechanical properties of titanium alloys.

18.
Biotechnol Biofuels ; 13: 99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32514311

RESUMO

BACKGROUND: As the most abundant polysaccharide in brown algae, alginate has become a promising economical material for bioethanol production. Recently, exo-type alginate lyases have received extensive attention because the unsaturated monosaccharides produced by their degradation of alginate can be easily converted into 4-deoxy-l-erythro-5-hexoseulose uronate (DEH), a promising material for bioethanol production and biorefinery systems. RESULTS: In this study, we cloned and characterized an exo-type polysaccharide lyase family 7 (PL7) alginate lyase VxAly7D from the marine bacterium Vibrio xiamenensis QY104. Recombinant VxAly7D was most active at 30 °C and exhibited 21%, 46% and 90% of its highest activity at 0, 10 and 20 °C, respectively. Compared with other exo-type alginate lyases, recombinant VxAly7D was shown to be a bifunctional alginate lyase with higher specific activity towards sodium alginate, polyG and polyM (462.4 ± 0.64, 357.37 ± 0.53 and 441.94 ± 2.46 U/mg, respectively). A total of 13 µg recombinant VxAly7D could convert 3 mg sodium alginate to unsaturated monosaccharides in 1 min with a yield of 37.6%, and the yield reached 95% in 1 h. In addition, the three-dimensional structure of VxAly7D was modelled using the crystal structure of AlyA5 from Zobellia galactanivorans DsijT as the template. The action mode and the end products of the W295A mutant revealed that Trp295 is a key amino acid residue responsible for the exolytic action mode of VxAly7D. CONCLUSION: Overall, our results show that VxAly7D is a PL7 exo-type alginate lyase with high activity and a high conversion rate at low/moderate temperatures, which provides a useful enzymatic tool for the development of biofuel production from brown algae and enriches the understanding of the structure and functional relationships of polysaccharide lyases.

19.
Appl Opt ; 58(11): 2803-2808, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31044880

RESUMO

The technique of using monochromatic light-emitting diodes (LEDs) to simulate sunlight has been developed rapidly in recent years. In this research, we propose a method to improve the simulating performance based on the influence of the driving current (70 to 700 mA) on the peak wavelength of monochromatic LEDs. The largest shift of the peak wavelength was observed in the green-light LED with 9 nm deviation. A modified Gaussian formula with an additional variable, driving current I, was used to simulate the LED power spectrum, and was further employed in an optimizing algorithm to achieve solar spectrum matching by 14 types of LEDs with different peak wavelengths.

20.
Cell Death Dis ; 10(5): 329, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988280

RESUMO

Protein S-nitrosylation, the redox-based posttranslational modification of a cysteine thiol by the attachment of a nitric oxide (NO) group, is responsible for a variety of signaling effects. Dysregulation of S-nitrosylation may be directly linked to cancer apoptotic resistance and cancer therapy outcomes, emphasizing the importance of S-nitrosylation in cancer. Peroxiredoxin-2 (Prdx2), an antioxidant enzyme, plays an important role in the protection of cancer cells from oxidative radical damage caused by hydrogen dioxide (H2O2), which is a potential target for cancer therapy. Our studies showed that, as an endogenous NO carrier, S-nitrosoglutathione (GSNO) induced apoptosis in lung cancer cells via nitrosylating Prdx2. The nitrosylation of Prdx2 at Cys51 and Cys172 sites disrupted the formation of Prdx2 dimer and repressed the Prdx2 antioxidant activity, causing the accumulation of endogenous H2O2. H2O2 activated AMPK, which then phosphorylated SIRT1 and inhibited its deacetylation activity toward p53 in A549 cells or FOXO1 in NCI-H1299 cells. Taken together, our results elucidate the roles and mechanisms of Prdx2 S-nitrosylation at Cys51 and Cys172 sites in lung cancer cells apoptosis and this finding provides an effective lung cancer treatment strategy for managing aberrant Prdx2 activity in lung cancers.


Assuntos
Apoptose/efeitos dos fármacos , Peroxirredoxinas/metabolismo , S-Nitrosoglutationa/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Proteína Forkhead Box O1/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Óxido Nítrico/metabolismo , Peroxirredoxinas/antagonistas & inibidores , Peroxirredoxinas/genética , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA