Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Reprod Toxicol ; 115: 49-55, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503164

RESUMO

Ferroptosis is a form of cell death caused by the accumulation of lipid peroxidation products due to abnormal iron metabolism. However, it remains unknown whether ferroptosis participates in the process of radiation-induced ovarian injury. Sphingosine-1-phosphate (S1P) is an important bioactive sphingolipid that has a protective effect on ovarian injury. The present study aims to determine whether X-ray radiation induces ferroptosis in the ovarian granulosa KGN cell line, and explore the potential effect of S1P and its mechanism in radiation-induced ferroptosis. The results indicated that irradiation reduced the viability of KGN cells, altered the mitochondrial morphology, induced the intracellular accumulation of iron ions, increased oxidative stress, and induced lipid peroxidation. Furthermore, the radiation exposure triggered the ferroptosis in KGN cells. S1P can alleviate radiation-induced ferroptosis. Furthermore, the protective effect of S1P was reversed after the application of siRNA to interfere with the glutathione peroxidase 4 expression. Ferroptosis might be pervasive in radiation-induced ovarian injury, and S1P may serve as a potential therapeutic approach to protect against the toxic effect of radiation in female gonads by inhibiting ferroptosis.


Assuntos
Ferroptose , Humanos , Feminino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferro/metabolismo , Células da Granulosa/metabolismo , Glutationa/metabolismo
2.
Front Plant Sci ; 12: 750728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777429

RESUMO

High temperature limits the cultivation and utilization of cool-season plants in many regions worldwide. Recently, extreme hot waves swept across the globe in summer, leading to enormous economic loss. The evaluation and identification of genotypic variation in thermotolerance within species are critical to breeding for environmental adaptation and also provide potential materials to explore thermo-resistant mechanism in plants. Forty-two accessions of creeping bentgrass (Agrostis stolonifera), which is a cool-season perennial grass for turf and ecological remediation, were collected from 15 different countries. Physiological traits, namely, chlorophyll (Chl) content, electrolyte leakage, photochemical efficiency, performance index on absorption basis, leaf relative water content, and osmotic potential were used to evaluate the heat tolerance of these materials in controlled growth chambers and field during summer. Stay-green and early-aging genotypes were selected to further reveal the potential mechanism of tolerance to senescence and heat damage associated with alterations in Chl metabolism, antioxidant and photosynthetic capacity, and endogenous γ-aminobutyric acid (GABA). Findings showed that there were significant genetic variations in physiological traits among 41 materials in response to high temperature stress. The 13M, PROVIDENCE, and LOFTS L-93 were the top three accessions with superior tolerance to heat and summer stress than other materials in terms of laboratory and field tests. In response to heat stress, the stay-green genotype PROVIDENCE exhibited significantly higher photochemical efficiency, net photosynthetic rate, transpiration rate, and water use efficiency than the heat-susceptible W6 6570. Delayed leaf senescence in relation to less Chl loss was detected in the PROVIDENCE associated with maintenance of significantly higher expression levels of Chl-anabolic genes (AsCHLH, AsPBGD, and AsPOR) and lower Chl-catabolic gene AsPPH under heat stress. Genetic attributes, such as better capacity to scavenge reactive oxygen species and higher endogenous GABA content could play positive roles in alleviating heat-induced senescence, oxidative damage, and metabolic disturbance in the PROVIDENCE.

3.
Front Genet ; 12: 656107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897768

RESUMO

MicroRNAs (miRNAs) are non-coding RNA molecules that make a significant contribution to diverse biological processes, and their mutations and dysregulations are closely related to the occurrence, development, and treatment of human diseases. Therefore, identification of potential miRNA-disease associations contributes to elucidating the pathogenesis of tumorigenesis and seeking the effective treatment method for diseases. Due to the expensive cost of traditional biological experiments of determining associations between miRNAs and diseases, increasing numbers of effective computational models are being used to compensate for this limitation. In this study, we propose a novel computational method, named PMDFI, which is an ensemble learning method to predict potential miRNA-disease associations based on high-order feature interactions. We initially use a stacked autoencoder to extract meaningful high-order features from the original similarity matrix, and then perform feature interactive learning, and finally utilize an integrated model composed of multiple random forests and logistic regression to make comprehensive predictions. The experimental results illustrate that PMDFI achieves excellent performance in predicting potential miRNA-disease associations, with the average area under the ROC curve scores of 0.9404 and 0.9415 in 5-fold and 10-fold cross-validation, respectively.

4.
Plant Signal Behav ; 16(3): 1858247, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33470151

RESUMO

γ-Aminobutyric acid (GABA) acts as an important regulator involved in the mediation of cell signal transduction and stress tolerance in plants. However, the function of GABA in transcriptional regulation is not fully understood in plants under water stress. The creeping bentgrass (Agrostis stolonifera) was pretreated with or without GABA (0.5 mM) for 24 hours before being exposed to 5 days of water stress. Physiological analysis showed that GABA-treated plants maintained significantly higher endogenous GABA content, leaf relative water content, net photosynthetic rate, and lower osmotic potential than untreated plants under water stress. The GABA application also significantly alleviated stress-induced increases in superoxide anion (O2.-) content, hydrogen peroxide (H2O2) content, and electrolyte leakage through enhancing total antioxidant capacity, superoxide dismutase (SOD) activity, and peroxidase (POD) activity in response to water stress. The transcriptomic analysis demonstrated that the GABA-induced changes in differentially expressed genes (DEGs) involved in carbohydrates, amino acids, and secondary metabolism helped to maintain better osmotic adjustment, energy supply, and metabolic homeostasis when creeping bentgrass suffers from water stress. The GABA triggered Ca2+-dependent protein kinase (CDPK) signaling and improved transcript levels of DREB1/2 and WRKY1/24/41 that could be associated with the upregulation of stress-related functional genes such as POD, DHNs, and HSP70 largely contributing to improved tolerance to water stress in relation to the antioxidant, prevention of cell dehydration, and protein protection in leaves.


Assuntos
Adaptação Fisiológica/genética , Agrostis/genética , Agrostis/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estresse Fisiológico/genética , Ácido gama-Aminobutírico/metabolismo , Antioxidantes/metabolismo , Análise por Conglomerados , Desidratação , Perfilação da Expressão Gênica , Ontologia Genética , Anotação de Sequência Molecular , Transcriptoma/genética
5.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050389

RESUMO

γ-Aminobutyric acid (GABA) plays an important role in regulating stress tolerance in plants. Purposes of this study was to determine the effect of an exogenous supply of GABA on tolerance to water stress in creeping bentgrass (Agrostis stolonifera), and further reveal the GABA-induced key mechanisms related to water balance, nitrogen (N) metabolism and nitric oxide (NO) production in response to water stress. Plants were pretreated with or without 0.5 mM GABA solution in the roots for 3 days, and then subjected to water stress induced by -0.52 MPa polyethylene glycol 6000 for 12 days. The results showed that water stress caused leaf water deficit, chlorophyll (Chl) loss, oxidative damage (increases in superoxide anion, hydrogen peroxide, malondialdehyde, and protein carbonyl content), N insufficiency, and metabolic disturbance. However, the exogenous addition of GABA significantly increased endogenous GABA content, osmotic adjustment and antioxidant enzyme activities (superoxide dismutase, catalase, dehydroascorbate reductase, glutathione reductase and monodehydroascorbate reductase), followed by effectively alleviating water stress damage, including declines in oxidative damage, photoinhibition, and water and Chl loss. GABA supply not only provided more available N, but also affected N metabolism through activating nitrite reductase and glutamine synthetase activities under water stress. The supply of GABA did not increase glutamate content and glutamate decarboxylase activity, but enhanced glutamate dehydrogenase activity, which might indicate that GABA promoted the conversion and utilization of glutamate for maintaining Chl synthesis and tricarboxylic acid cycle when creeping bentgrass underwent water stress. In addition, GABA-induced NO production, depending on nitrate reductase and NO-associated protein pathways, could be associated with the enhancement of antioxidant defense. Current findings reveal the critical role of GABA in regulating signal transduction and metabolic homeostasis in plants under water-limited condition.


Assuntos
Agrostis/fisiologia , Secas , Óxido Nítrico/metabolismo , Nitrogênio/metabolismo , Transdução de Sinais , Estresse Fisiológico , Água/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adaptação Biológica , Estresse Oxidativo
6.
Plant Physiol Biochem ; 145: 216-226, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31707249

RESUMO

γ-Aminobutyric acid (GABA), a non-proteinaceous amino acid, modulates plant growth and stress tolerance. However, the potential role of GABA in regulating key metabolic pathways and stress-defensive proteins against drought in plants has never been explored. Creeping bentgrass (Agrostis stolonifera) plants were pretreated with or without GABA and then subjected to water stress for 8 days in controlled growth chambers (23/19 °C, day/night). Physiological analysis showed that elevated endogenous GABA level via exogenous GABA application significantly mitigated water stress damage to creeping bentgrass, as manifested by increased leaf relative water content, water use efficiency, osmotic adjustment (OA), photochemical efficiency (Fv/Fm), net photosynthetic rate, and reduced oxidative damage. iTRAQ-based proteomics found that enhanced chaperones accumulation, carbohydrates, amino acids, and energy metabolism played important roles in protein protection, OA, energy maintenance, and metabolic balance, which is important adaptive response to drought stress in creeping bentgrass. The GABA further promoted energy production and conversion, antioxidant defense, and DHN3 accumulation that were essential for energy requirement, ROS-scavenging, and the prevention of cell dehydration in leaf during drought stress. In addition, GABA-treated plants maintained significantly higher abundance of dicarboxylate transporter 2.1, ATP-dependent zinc metalloprotease, receptor-like protein kinase HERK1, o-acyltransferase WSD1, omega-6 fatty acid desaturase, and two-component response regulator ORR21 than untreated plants under drought stress. The result provides new evidences that GABA-induced drought tolerance is possibly involved in the improvement of nitrogen recycling, protection of photosystem II, mitigation of drought-depressed cell elongation, wax biosynthesis, fatty acid desaturase, and delaying leaf senescence in creeping bentgrass.


Assuntos
Agrostis , Secas , Estresse Fisiológico , Ácido gama-Aminobutírico , Agrostis/genética , Agrostis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Estresse Fisiológico/genética , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
7.
Ying Yong Sheng Tai Xue Bao ; 25(5): 1283-92, 2014 May.
Artigo em Chinês | MEDLINE | ID: mdl-25129926

RESUMO

The characteristics of vegetation and soil were investigated in Bita Lake and Shudu Lake wetlands in northwest Yunnan Plateau under tourism disturbance. The 22 typical plots in the wetlands were classified into 4 types by TWINSPAN, including primary wetland, light degradation, moderate degradation, and severe degradation. Along the degradation gradient, the plant community density, coverage, species number and Shannon diversity index increased and the plant height decreased in Bita Lake and Shudu Lake wetlands, and Whittaker diversity index increased in Bita Lake wetland. Plant species number, soil organic matter, total nitrogen, porosity, available nitrogen, available phosphorus and available potassium contents were higher in Shudu Lake wetland than in Bita Lake wetland, but the plant density, height, soil total potassium and pH were opposite. Canonical correspondence analysis (CCA) by importance values of 42 plants and 11 soil variables showed that soil organic matter, total nitrogen and total potassium were the key factors on plant species distribution in Bita Lake and Shudu Lake wetlands under tourism disturbance. TWINSPAN classification and analysis of vegetation-soil characteristics indicated the effects of tourism disturbance in Bita Lake wetland were larger than in Shudu Lake wetland.


Assuntos
Plantas , Solo , Áreas Alagadas , China , Monitoramento Ambiental , Atividades Humanas , Lagos , Nitrogênio , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA