Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell Prolif ; : e13657, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764128

RESUMO

Cortical bone loss is intricately associated with ageing and coincides with iron accumulation. The precise role of ferroptosis, characterized by iron overload and lipid peroxidation, in senescent osteocytes remains elusive. We found that ferroptosis was a crucial mode of osteocyte death in cortical bone during ageing. Using a single-cell transcriptome analysis, we identified activating transcription factor 3 (ATF3) as a critical driver of osteocyte ferroptosis. Elevated ATF3 expression in senescent osteocytes promotes iron uptake by upregulating transferrin receptor 1 while simultaneously inhibiting solute carrier family 7-member 11-mediated cystine import. This process leads to an iron overload and lipid peroxidation, culminating in ferroptosis. Importantly, ATF3 inhibition in aged mice effectively alleviated ferroptosis in the cortical bone and mitigated cortical bone mass loss. Taken together, our findings establish a pivotal role of ferroptosis in cortical bone loss in older adults, providing promising prevention and treatment strategies for osteoporosis and fractures.

2.
Int J Mol Med ; 52(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264964

RESUMO

Apical periodontitis is an oral common inflammatory disease initiated by infection of pulp chamber and is characterized by destruction and resorption of the periapical bone. As a local infection, pathogens and their products in periapical tissues, as well as inflammatory cytokines produced in periapical lesions, enter the blood circulation, triggering systemic immune responses and leading to the pathogenesis of various types of systemic disease. Therefore, apical periodontitis might be associated with systemic disease rather than solely simple local oral disease. In addition, the existence of a hyperinflammatory state in certain patients with chronic inflammation­related disorder may affect the progression or prognosis of apical periodontitis. However, the association and potential mechanisms between apical periodontitis and systemic diseases remain unclear. An in­depth understanding of the association between apical periodontitis and systemic disease will be useful for both dentists and physicians to eliminate the possible risk factors and promote the healing of apical periodontitis and systemic disease. Thus, the aim of the present review is to introduce the potential relationship between apical periodontitis and systemic disease.


Assuntos
Periodontite Periapical , Humanos , Periodontite Periapical/complicações , Fatores de Risco , Citocinas , Doença Crônica
3.
Cell Prolif ; 56(10): e13474, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37051760

RESUMO

Diabetes mellitus (DM) has become a serious threat to human health. Bone regeneration deficiency and nonunion caused by DM is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Here, we find that targeted activation of retinoic acid-related orphan receptor α (RORα) by SR1078 in the early stage of bone defect repair can significantly promote in situ bone regeneration of DM rats. Bone regeneration relies on the activation of macrophage RORα in the early bone repair, but RORα of DM rats fails to upregulation as hyperglycemic inflammatory microenvironment induced IGF1-AMPK signalling deficiency. Mechanistic investigations suggest that RORα is vital for macrophage-induced migration and proliferation of bone mesenchymal stem cells (BMSCs) via a CCL3/IL-6 depending manner. In summary, our study identifies RORα expressed in macrophages during the early stage of bone defect repair is crucial for in situ bone regeneration, and offers a novel strategy for bone regeneration therapy and fracture repair in DM patients.


Assuntos
Diabetes Mellitus , Macrófagos , Humanos , Ratos , Animais , Regeneração Óssea , Transdução de Sinais
4.
Cell Death Differ ; 30(6): 1503-1516, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37029304

RESUMO

Exposure to artificial light at night (LAN) can induce obesity, depressive disorder and osteoporosis, but the pernicious effects of excessive LAN exposure on tissue structure are poorly understood. Here, we demonstrated that artificial LAN can impair developmental growth plate cartilage extracellular matrix (ECM) formation and cause endoplasmic reticulum (ER) dilation, which in turn compromises bone formation. Excessive LAN exposure induces downregulation of the core circadian clock protein BMAL1, which leads to collagen accumulation in the ER. Further investigations suggest that BMAL1 is the direct transcriptional activator of prolyl 4-hydroxylase subunit alpha 1 (P4ha1) in chondrocytes, which orchestrates collagen prolyl hydroxylation and secretion. BMAL1 downregulation induced by LAN markedly inhibits proline hydroxylation and transport of collagen from ER to golgi, thereby inducing ER stress in chondrocytes. Restoration of BMAL1/P4HA1 signaling can effectively rescue the dysregulation of cartilage formation within the developmental growth plate induced by artificial LAN exposure. In summary, our investigations suggested that LAN is a significant risk factor in bone growth and development, and a proposed novel strategy targeting enhancement of BMAL1-mediated collagen hydroxylation could be a potential therapeutic approach to facilitate bone growth.


Assuntos
Fatores de Transcrição ARNTL , Lâmina de Crescimento , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Lâmina de Crescimento/metabolismo , Hidroxilação , Poluição Luminosa , Colágeno/metabolismo , Cartilagem/metabolismo
5.
EBioMedicine ; 88: 104444, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36709580

RESUMO

BACKGROUND: Tumor-resident microbiota has been documented for various cancer types. Oral squamous cell carcinoma (OSCC) is also enriched with microbiota, while the significance of microbiota in shaping the OSCC microenvironment remains elusive. METHODS: We used bioinformatics and clinical sample analysis to explore relationship between F. nucleatum and OSCC progression. Xenograft tumor model, metabolic screening and RNA sequencing were performed to elucidate mechanisms of pro-tumor role of F. nucleatum. FINDINGS: We show that a major protumorigenic bacterium, F. nucleatum, accumulates in invasive margins of OSCC tissues and drives tumor-associated macrophages (TAMs) formation. The mechanistic dissection shows that OSCC-resident F. nucleatum triggers the GalNAc-Autophagy-TBC1D5 signaling, leading to GLUT1 aggregation in the plasma membrane and the deposition of extracellular lactate. Simultaneous functional inhibition of GalNAc and GLUT1 efficiently reduces TAMs formation and restrains OSCC progression. INTERPRETATION: These findings suggest that tumor-resident microbiota affects the immunomodulatory and protumorigenic microenvironment via modulating glycolysis and extracellular lactate deposition. The targeted intervention of this process could provide a distinct clinical strategy for patients with advanced OSCC. FUNDING: This work was supported by the National Natural Science Foundation of China for Key Program Projects (82030070, to LC) and Distinguished Young Scholars (31725011, to LC), as well as Innovation Team Project of Hubei Province (2020CFA014, to LC).


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/metabolismo , Ácido Láctico , Transportador de Glucose Tipo 1/genética , Microambiente Tumoral , Proteínas Ativadoras de GTPase/metabolismo
6.
Int J Oral Sci ; 14(1): 53, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376275

RESUMO

Bone regeneration remains a great clinical challenge. Low intensity near-infrared (NIR) light showed strong potential to promote tissue regeneration, offering a promising strategy for bone defect regeneration. However, the effect and underlying mechanism of NIR on bone regeneration remain unclear. We demonstrated that bone regeneration in the rat skull defect model was significantly accelerated with low-intensity NIR stimulation. In vitro studies showed that NIR stimulation could promote the osteoblast differentiation in bone mesenchymal stem cells (BMSCs) and MC3T3-E1 cells, which was associated with increased ubiquitination of the core circadian clock protein Cryptochrome 1 (CRY1) in the nucleus. We found that the reduction of CRY1 induced by NIR light activated the bone morphogenetic protein (BMP) signaling pathways, promoting SMAD1/5/9 phosphorylation and increasing the expression levels of Runx2 and Osterix. NIR light treatment may act through sodium voltage-gated channel Scn4a, which may be a potential responder of NIR light to accelerate bone regeneration. Together, these findings suggest that low-intensity NIR light may promote in situ bone regeneration in a CRY1-dependent manner, providing a novel, efficient and non-invasive strategy to promote bone regeneration for clinical bone defects.


Assuntos
Regeneração Óssea , Relógios Circadianos , Criptocromos , Animais , Ratos , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Criptocromos/metabolismo , Osteoblastos/metabolismo , Osteogênese , Fatores de Transcrição/metabolismo
7.
Carbohydr Polym ; 298: 120127, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241299

RESUMO

Critical-sized maxillofacial bone defects have been a tough clinical challenge considering their requirements for functional and structural repair. In this study, an injectable in-situ forming double cross-linked hydrogel was prepared from gelatin (Gel), 20 mg/mL alginate dialdehyde (ADA), 4.5 mg/mL Ca2+ and borax. Improved properties of composite hydrogel might well fit and cover irregular geometric shape of facial bone defects, support facial structures and conduct masticatory force. We innovatively constructed a bioactive poly-porous structure by decoration with nano-sized hydroxyapatite (nHA). The highly ordered, homogeneous and size-confined porous surface served as an interactive osteogenic platform for communication and interplay between macrophages and bone marrow derived stem cells (BMSCs). Effective macrophage-BMSC crosstalk well explained the remarkable efficiency of nHA-loaded gelatin/alginate hydrogel (nHA@Gel/ADA) in the repair of critical-size skull bone defect. Collectively, the composite hydrogel constructed here might serve as a promising alternative in repair process of complex maxillofacial bone defects.


Assuntos
Gelatina , Células-Tronco Mesenquimais , Alginatos/química , Regeneração Óssea , Durapatita/química , Gelatina/química , Hidrogéis/química , Osteogênese , Engenharia Tecidual , Alicerces Teciduais/química
8.
Front Mol Biosci ; 9: 965753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188222

RESUMO

As clusters of peptides or steroids capable of high-efficiency information transmission, hormones have been substantiated to coordinate metabolism, growth, development, and other physiological processes, especially in bone physiology and repair metabolism. In recent years, the application of hormones for implant osseointegration has become a research hotspot. Herein, we provide a comprehensive overview of the relevant reports on endogenous hormones and their corresponding supplementary preparations to explore the association between hormones and the prognosis of implants. We also discuss the effects and mechanisms of insulin, parathyroid hormone, melatonin, vitamin D, and growth hormone on osseointegration at the molecular and body levels to provide a foothold and guide future research on the systemic conditions that affect the implantation process and expand the relative contraindications of the implant, and the pre-and post-operative precautions. This review shows that systemic hormones can regulate the osseointegration of oral implants through endogenous or exogenous drug-delivery methods.

9.
Front Immunol ; 13: 990457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311779

RESUMO

Insufficient bone matrix formation caused by diabetic chronic inflammation can result in bone nonunion, which is perceived as a worldwide epidemic, with a substantial socioeconomic and public health burden. Macrophages in microenvironment orchestrate the inflammation and launch the process of bone remodeling and repair, but aberrant activation of macrophages can drive drastic inflammatory responses during diabetic bone regeneration. In diabetes mellitus, the proliferation of resident macrophages in bone microenvironment is limited, while enhanced myeloid differentiation of hematopoietic stem cells (HSCs) leads to increased and constant monocyte recruitment and thus macrophages shift toward the classic pro-inflammatory phenotype, which leads to the deficiency of bone regeneration. In this review, we systematically summarized the anomalous origin of macrophages under diabetic conditions. Moreover, we evaluated the deficit of pro-regeneration macrophages in the diabetic inflammatory microenvironment. Finally, we further discussed the latest developments on strategies based on targeting macrophages to promote diabetic bone regeneration. Briefly, this review aimed to provide a basis for modulating the biological functions of macrophages to accelerate bone regeneration and rescue diabetic fracture healing in the future.


Assuntos
Diabetes Mellitus , Macrófagos , Humanos , Monócitos , Regeneração Óssea , Inflamação/genética
10.
Cell Prolif ; 55(10): e13287, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35842899

RESUMO

The emergence of single-cell RNA sequencing enables simultaneous sequencing of thousands of cells, making the analysis of cell population heterogeneity more efficient. In recent years, single-cell RNA sequencing has been used in the investigation of heterogeneous cell populations, cellular developmental trajectories, stochastic gene transcriptional kinetics, and gene regulatory networks, providing strong support in life science research. However, the application of single-cell RNA sequencing in the field of oral science has not been reviewed comprehensively yet. Therefore, this paper reviews the development and application of single-cell RNA sequencing in oral science, including fields of tissue development, teeth and jaws diseases, maxillofacial tumors, infections, etc., providing reference and prospects for using single-cell RNA sequencing in studying the oral diseases, tissue development, and regeneration.


Assuntos
Redes Reguladoras de Genes , Diferenciação Celular/genética , Análise de Sequência de RNA
11.
Am J Transl Res ; 14(5): 2801-2824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35702068

RESUMO

BACKGROUND: Tongue squamous cell carcinoma (TSCC) is one of the most common oral cancers. Immune activity is significantly related to the initiation and progression of TSCC. Systemic analysis of the immunogenomic landscape and identification of crucial immune-related genes (IRGs) would help understanding of TSCC. Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) provide multiple TSCC cases for use in an integrated immunogenomic study. METHODS: Immune landscape of TSCC was depicted by expression microarray data from GSE13601 and GSE34105. Univariate Cox analysis, in combination with survival analysis, was applied to select candidate IRGs with significant survival value. Survival predicting models were constructed by multivariate Cox regression and logistic regression analysis. Unsupervised clustering analysis was used to construct an immune gene panel based on prognostic IRGs to distinguish TSCC subgroups with different prognostic outcomes. Finally, IHC staining was performed to validate the clinical value of this immune-gene panel. RESULTS: Differentially expressed IRGs were identified in two TSCC microarray datasets. Functional enrichment analysis revealed that ontology terms associated with variations in T cell function, were highly enriched. Infiltration status of activated CD8+ T cells, central memory CD4+ T cells and type 17 T helper cells, had great prognostic value for TSCC progression. Unsupervised clustering analysis was further performed to classify TSCC patients into three subgroups. CTSG, CXCL13, and VEGFA were finally combined together to form an immune-gene panel, todistinguish different TSCC subgroups. IHC staining of TSCC sections further validated the clinical efficiency of the immune-gene panel consisting of prognostic IRGs to distinguish TSCC patients. CONCLUSION: VEGFA, CXCL13, and CTSG, correlated with T cell infiltration and prognostic outcome. They were screened to form an immune-gene panel to identify TSCC subgroups with different prognostic outcomes. Clinical IHC further validated the efficacy of this immune-gene panel to evaluate aggressiveness of TSCC development.

12.
Ecol Evol ; 12(4): e8866, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35462974

RESUMO

Vulpesare widely distributed throughout the world and have undergone drastic physiological and phenotypic changes in response to their environment. However, little is known about the underlying genetic causes of these traits, especially Vulpes corsac. In this study, RNA-Seq was used to obtain a comprehensive dataset for multiple pooled tissues of corsac fox, and selection analysis of orthologous genes was performed to identify the genes that may be influenced by the low-temperature environment. More than 6.32 Gb clean reads were obtained and assembled into a total of 173,353 unigenes with an average length of 557 bp for corsac fox. Selective pressure analysis showed that 16 positively selected genes (PSGs) were identified in corsac fox, red fox, and arctic fox. Enrichment analysis of PSGs showed that the LRP11 gene was enriched in several pathways related to the low-temperature response and might play a key role in response to environmental stimuli of foxes. In addition, several positively selected genes were related to DNA damage repair (ELP2 and CHAF1A), innate immunity (ARRDC4 and S100A12), and the respiratory chain (NDUFA5), and these positively selected genes might play a role in adaptation to harsh wild fox environments. The results of common orthologous gene analysis showed that gene flow or convergent evolution might be an important factor in promoting regional differentiation of foxes. Our study provides a valuable transcriptomic resource for the evolutionary history of the corsac fox and the adaptations to the extreme environments.

13.
Cell Death Differ ; 29(4): 874-887, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35094018

RESUMO

The circadian clock is a master regulator in coordinating daily oscillations of physiology and behaviors. Nevertheless, how the circadian rhythm affects endochondral ossification is poorly understood. Here we showed that endochondral bone formation exhibits circadian rhythms, manifested as fast DNA replication in the daytime, active cell mitosis, and matrix synthesis at night. Circadian rhythm disruption led to endochondral ossification deformities. The mechanistic dissection revealed that melatonin receptor 1 (MTR1) periodically activates the AMPKß1 phosphorylation, which then orchestrates the rhythms of cell proliferation and matrix synthesis via destabilizing the clock component CRY1 and triggering BMAL1 expression. Accordingly, the AMPKß1 agonist is capable of alleviating the abnormity of endochondral ossification caused by circadian dysrhythmias. Taken together, these findings indicated that the central circadian clock could control endochondral bone formation via the MTR1/AMPKß1/BMAL1 signaling axis in chondrocytes. Also, our results suggested that the AMPKß1 signaling activators are promising medications toward endochondral ossification deformities.


Assuntos
Ritmo Circadiano , Melatonina , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano/fisiologia , Osteogênese , Receptores de Melatonina
14.
Front Pharmacol ; 12: 741295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966277

RESUMO

Circadian clocks participate in the coordination of various metabolic and biological activities to maintain homeostasis. Disturbances in the circadian rhythm and cancers are closely related. Circadian clock genes are differentially expressed in many tumors, and accelerate the development and progression of tumors. In addition, tumor tissues exert varying biological activities compared to normal tissues due to resetting of altered rhythms. Thus, chronotherapeutics used for cancer treatment should exploit the timing of circadian rhythms to achieve higher efficacy and mild toxicity. Due to interpatient differences in circadian functions, our findings advocate an individualized precision approach to chronotherapy. Herein, we review the specific association between circadian clocks and cancers. In addition, we focus on chronotherapies in cancers and personalized biomarkers for the development of precision chronotherapy. The understanding of circadian clocks in cancer will provide a rationale for more effective clinical treatment of tumors.

15.
Stem Cells Int ; 2021: 4307961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777503

RESUMO

The bone extracellular matrix (ECM) contains organic and mineral constituents. The establishment and degradation processes of ECM connect with spatial and temporal patterns, especially circadian rhythms in ECM. These patterns are responsible for the physical and biological characteristics of bone. The disturbances of the patterns disrupt bone matrix remodeling and cause diverse bone diseases, such as osteogenesis imperfecta (OI) and bone fracture. In addition, the main regulatory factors and inflammatory factors also follow circadian rhythms. Studies show that the circadian oscillations of these factors in bone ECM potentially influence the interactions between immune responses and bone formation. More importantly, mesenchymal stem cells (MSCs) within the specific microenvironments provide the regenerative potential for tissue remodeling. In this review, we summarize the advanced ECM spatial characteristics and the periodic patterns of bone ECM. Importantly, we focus on the intrinsic connections between the immunoinflammatory system and bone formation according to circadian rhythms of regulatory factors in bone ECM. And our research group emphasizes the multipotency of MSCs with their microenvironments. The advanced understandings of bone ECM formation patterns and MSCs contribute to providing optimal prevention and treatment strategies.

16.
Front Mol Biosci ; 8: 717038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497832

RESUMO

The oral cavity serves as an open local organ of the human body, exposed to multiple external factors from the outside environment. Coincidentally, initiation and development of oral cancer are attributed to many external factors, such as smoking and drinking, to a great extent. This phenomenon was partly explained by the genetic abnormalities traditionally induced by carcinogens. However, more and more attention has been attracted to the influence of carcinogens on the local immune status. On the other hand, immune heterogeneity of cancer patients is a huge obstacle for enhancing the clinical efficacy of tumor immunotherapy. Thus, in this review, we try to summarize the current opinions about variant genetic changes and multiple immune alterations induced by different oral cancer carcinogens and discuss the prospects of targeted immunotherapeutic strategies based on specific immune abnormalities caused by different carcinogens, as a predictive way to improve clinical outcomes of immunotherapy-treated oral cancer patients.

17.
J Transl Med ; 19(1): 410, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579752

RESUMO

Metabolism is one of the most complex cellular biochemical reactions, providing energy and substances for basic activities such as cell growth and proliferation. Early studies have shown that glucose is an important nutrient in osteoblasts. In addition, amino acid metabolism and fat metabolism also play important roles in bone reconstruction. Mammalian circadian clocks regulate the circadian cycles of various physiological functions. In vertebrates, circadian rhythms are mediated by a set of central clock genes: muscle and brain ARNT like-1 (Bmal1), muscle and brain ARNT like-2 (Bmal2), circadian rhythmic motion output cycle stagnates (Clock), cryptochrome 1 (Cry1), cryptochrome2 (Cry2), period 1 (Per1), period 2 (Per2), period 3 (Per3) and neuronal PAS domain protein 2 (Npas2). Negative feedback loops, controlled at both the transcriptional and posttranslational levels, adjust these clock genes in a diurnal manner. According to the results of studies on circadian transcriptomic studies in several tissues, most rhythmic genes are expressed in a tissue-specific manner and are affected by tissue-specific circadian rhythms. The circadian rhythm regulates several activities, including energy metabolism, feeding time, sleeping, and endocrine and immune functions. It has been reported that the circadian rhythms of mammals are closely related to bone metabolism. In this review, we discuss the regulation of the circadian rhythm/circadian clock gene in osteoblasts/osteoclasts and the energy metabolism of bone, and the relationship between circadian rhythm, bone remodeling, and energy metabolism. We also discuss the therapeutic potential of regulating circadian rhythms or changing energy metabolism on bone development/bone regeneration.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Osso e Ossos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Metabolismo Energético , Fatores de Transcrição
18.
J Mater Chem B ; 9(40): 8365-8377, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34542139

RESUMO

Silk is an ancient material with essential roles in numerous biomedical applications, such as tissue regeneration and drug delivery, because of its excellent tunable mechanical properties and diverse physical structures. In addition to the necessary functionalities for biomedical applications, another critical factor for materials applied in biology is the appropriate immune interactions with the body. This review focuses on the immune responses of silk-based materials applied in biomedical applications, specifically antigenicity. The factors affecting the antigenicity of silk-based materials are complicated and are related to the composition and structural characteristics of the materials. At the same time, the composition of silk-based materials varies with its species sources, such as silkworms, spiders, honey bees, or engineered recombinant silk. Additionally, different processing methods are used to fabricate different material formats, such as films, hydrogels, scaffolds, particles, and fibers, resulting in different structural characteristics. Furthermore, the resulting body reactions are also different with different degrees of the immune response. Silk protein typically induces a mild immune response, and immunogenicity can play active roles in osteogenesis, angiogenesis, and protection from inflammation. However, there are some rare reports of severe immune responses caused by silk, which can result in an allergic response or tissue necrosis. The source of allergenicity in silk-based materials is currently under-studied and how to regulate and eliminate the overreaction of the immune system is essential for further applications. Overall, the diverse characteristics of silk-based materials mostly show beneficial bioresponses with mild immunogenicity, and the tunable properties make it applicable in immune-related biomedical applications.


Assuntos
Antígenos/química , Materiais Biocompatíveis/química , Seda/química , Seda/imunologia , Animais , Antígenos/imunologia , Antígenos/metabolismo
19.
Front Genet ; 12: 651882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093649

RESUMO

Plasminogen activator, urokinase (uPA) is a secreted serine protease whose Dysregulation is often accompanied by various cancers. However, the biological functions and potential mechanisms of PLAU in head and neck squamous cell carcinoma (HNSCC) remain undetermined. Here, the expression, prognosis, function, and coexpression genetic networks of PLAU in HNSCC were investigated by a series of public bioinformatics tools. A Higher PLAU level predicted a poorer clinical outcome. Meanwhile, functional network analysis implied that PLAU and associated genes mainly regulated cell-substrate adhesion, tissue migration, and extracellular matrix binding. The top 4 significantly associated genes are C10orf55, ITGA5, SERPINE1, and TNFRSF12A. Pathway enrichment analysis indicated that PLAU might activate the epithelial-to-mesenchymal transition (EMT) process, which could explain the poor prognosis in HNSCC. Besides, genes associated with PLAU were also enriched in EMT pathways. We further validated the bioinformatics analysis results by in vivo and in vitro experiments. Then, we found that much more PLAU was detected in HNSCC tissues, and the silencing of PLAU inhibit the proliferation, migration, and EMT process of CAL27 cell lines. Notably, the downregulation of PLAU decreased the expression of TNFRSF12A. Moreover, knockdown TNFRSF12A also inhibits cell proliferation and migration. In vivo experiment results indicated that PLAU inhibition could suppress tumor growth. Collectively, PLAU is necessary for tumor progression and can be a diagnostic and prognostic biomarker in HNSCC.

20.
Int J Mol Med ; 48(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34013376

RESUMO

Calcium silicate­based bioceramics have been applied in endodontics as advantageous materials for years. In addition to excellent physical and chemical properties, the biocompatibility and bioactivity of calcium silicate­based bioceramics also serve an important role in endodontics according to previous research reports. Firstly, bioceramics affect cellular behavior of cells such as stem cells, osteoblasts, osteoclasts, fibroblasts and immune cells. On the other hand, cell reaction to bioceramics determines the effect of wound healing and tissue repair following bioceramics implantation. The aim of the present review was to provide an overview of calcium silicate­based bioceramics currently applied in endodontics, including mineral trioxide aggregate, Bioaggregate, Biodentine and iRoot, focusing on their in vitro biocompatibility and bioactivity. Understanding their underlying mechanism may help to ensure these materials are applied appropriately in endodontics.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Compostos de Cálcio/uso terapêutico , Cerâmica/uso terapêutico , Endodontia/métodos , Silicatos/uso terapêutico , Compostos de Alumínio/química , Compostos de Alumínio/uso terapêutico , Materiais Biocompatíveis/química , Compostos de Cálcio/química , Hidróxido de Cálcio/química , Hidróxido de Cálcio/uso terapêutico , Cerâmica/química , Combinação de Medicamentos , Hidroxiapatitas/química , Hidroxiapatitas/uso terapêutico , Óxidos/química , Óxidos/uso terapêutico , Silicatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA