Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Acta Biomater ; 179: 325-339, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561074

RESUMO

Subarachnoid hemorrhage (SAH) is primarily attributed to the rupture of intracranial aneurysms and is associated with a high incidence of disability and mortality. SAH disrupts the blood‒brain barrier, leading to the release of iron ions from blood within the subarachnoid space, subsequently inducing neuronal ferroptosis. A recently discovered protein, known as ferroptosis suppressor protein 1 (FSP1), exerts anti-ferroptotic effects by facilitating the conversion of oxidative coenzyme Q 10 (CoQ10) to its reduced form, which effectively scavenges reactive oxygen radicals and mitigates iron-induced ferroptosis. In our investigation, we observed an increase in FSP1 levels following SAH. However, the depletion of CoQ10 caused by SAH hindered the biological function of FSP1. Therefore, we created neuron-targeted liposomal CoQ10 by introducing the neuron-targeting peptide Tet1 onto the surface of liposomal CoQ10. Our objective was to determine whether this formulation could activate the FSP1 system and subsequently inhibit neuronal ferroptosis. Our findings revealed that neuron-targeted liposomal CoQ10 effectively localized to neurons at the lesion site after SAH. Furthermore, it facilitated the upregulation of FSP1, reduced the accumulation of malondialdehyde and reactive oxygen species, inhibited neuronal ferroptosis, and exerted neuroprotective effects both in vitro and in vivo. Our study provides evidence that supplementation with CoQ10 can effectively activate the FSP1 system. Additionally, we developed a neuron-targeted liposomal CoQ10 formulation that can be selectively delivered to neurons at the site of SAH. This innovative approach represents a promising therapeutic strategy for neuronal ferroptosis following SAH. STATEMENT OF SIGNIFICANCE: Subarachnoid hemorrhage (SAH) is primarily attributed to the rupture of intracranial aneurysms and is associated with a high incidence of disability and mortality. Ferroptosis suppressor protein 1 (FSP1), exerts anti-ferroptotic effects by facilitating the conversion of oxidative coenzyme Q 10 (CoQ10) to its reduced form, which effectively scavenges reactive oxygen radicals and mitigates iron-induced ferroptosis. In our investigation, we observed an increase in FSP1 levels following SAH. However, the depletion of CoQ10 caused by SAH hindered the biological function of FSP1. Therefore, we created neuron-targeted liposomal CoQ10. We find that it effectively localized to neurons at the lesion site after SAH and activated the FSP1/CoQ10 system. This innovative approach represents a promising therapeutic strategy for neuronal ferroptosis following SAH and other central nervous system diseases characterized by disruption of the blood-brain barrier.


Assuntos
Ferroptose , Lipossomos , Neurônios , Hemorragia Subaracnóidea , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Animais , Ferroptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Lipossomos/química , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL
3.
J Control Release ; 368: 595-606, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185333

RESUMO

Ferroptosis, a unique iron-dependent mode of cell death characterized by lipid peroxide accumulation, holds significant potential for the treatment of glioblastoma (GBM). However, the effectiveness of ferroptosis is hindered by the limited intracellular ferrous ions (Fe2+) and hydrogen peroxide (H2O2). In this study, a novel near-infrared (NIR)-light-responsive nanoplatform (ApoE-UMSNs-GOx/SRF) based on upconversion nanoparticles (UCNPs) was developed. A layer of mesoporous silica and a lipid bilayer were coated on UCNPs sequentially and loaded with glucose oxidase (GOx) and sorafenib, respectively. Further attachment of the ApoE peptide endowed the nanoplatform with BBB penetration and GBM targeting capabilities. Our results revealed that ApoE-UMSNs-GOx/SRF could efficiently accumulated in the orthotopic GBM and induce amplified ferroptosis when combining with NIR irradiation. The UCNPs mediated the photoreduction of Fe3+ to Fe2+ by converting NIR to UV light, and excess H2O2 was produced by the reaction of glucose with the loaded GOx. These processes greatly promoted the production of ROS, which together with inhibition of system Xc- by the loaded sorafenib, leading to enhanced accumulation of lipid peroxides and significantly improved the antiglioma effect both in vitro and in vivo. Our strategy has the potential to enhance the effectiveness of ferroptosis as a therapeutic approach for GBM.


Assuntos
Ferroptose , Glioblastoma , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Glioblastoma/tratamento farmacológico , Fotoquimioterapia/métodos , Sorafenibe , Peróxido de Hidrogênio , Apolipoproteínas E/uso terapêutico , Regeneração , Linhagem Celular Tumoral , Nanopartículas/química , Neoplasias/tratamento farmacológico
4.
Int J Nanomedicine ; 18: 5701-5712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841022

RESUMO

Background: Radiation therapy (RT) is commonly used to treat glioblastoma, but its immunomodulatory effect on tumors, through mechanisms such as immunogenic cell death (ICD), is relatively weak. Gold nanoparticles (AuNPs) have been suggested as potential radio-sensitizers, but it is unclear if they can enhance radiation-induced ICD. This study aimed to investigate the potential of AuNPs to improve the effectiveness of radiation-induced ICD. Methods: G422 cells were treated with a combination of AuNPs and RT to induce cell death. Various assays were conducted to assess cell death, surface expression of CRT, and release of HMGB1 and ATP. In vitro co-culture experiments with bone marrow-derived dendritic cells (BMDCs) were performed to analyze the immunogenicity of dying cancer cells. Flow cytometry was used to measure the maturation rate of BMDCs. An in vivo mouse tumor prophylactic vaccination model was employed to assess immunogenicity. Results: The study findings presented here confirm that the combination of radiotherapy (RT) with AuNPs can induce a stronger ICD effect on glioblastoma cells compared to using RT alone. Specifically, treatment with AuNPs combined with RT resulted in the emission of crucial damage-associated molecular patterns (DAMPs) such as CRT, HMGB1 (479.41±165.34pg/mL vs 216.04±178.16 pg/mL, *P<0.05) and ATP (The release of ATP in the AuNPs + RT group was 1.2 times higher than in the RT group, *P<0.05). The proportion of BMDC maturation rate was higher in the group treated with AuNPs and RT compared to the group treated with RT alone. (32.53±0.52% vs 25.03±0.28%,***P < 0.001). In the tumor vaccine experiment, dying tumor cells treated with AuNPs and RT effectively inhibited tumor growth in mice when exposed to living tumor cells. Conclusion: These results indicate that AuNPs have the ability to enhance RT-induced ICD.


Assuntos
Glioblastoma , Proteína HMGB1 , Nanopartículas Metálicas , Camundongos , Animais , Ouro/farmacologia , Glioblastoma/radioterapia , Proteína HMGB1/metabolismo , Morte Celular Imunogênica , Nanopartículas Metálicas/uso terapêutico , Trifosfato de Adenosina , Linhagem Celular Tumoral
5.
BMC Cancer ; 23(1): 628, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407932

RESUMO

Hepatocellular carcinoma (HCC) is common worldwide, and novel therapeutic targets and biomarkers are needed to improve outcomes. In this study, bioinformatics analyses combined with in vitro and in vivo assays were used to identify the potential therapeutic targets. Differentially expressed genes (DEG) in HCC were identified by the intersection between The Cancer Genome Atlas and International Cancer Genome Consortium data. The DEGs were evaluated by a gene set enrichment analysis as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. A protein interaction network, univariate Cox regression, and Lasso regression were used to screen out hub genes correlated with survival. Increased expression of the long noncoding RNA GBAP1 in HCC was confirmed in additional datasets and its biological function was evaluated in HCC cell lines and nude mice. Among 121 DEGs, GBAP1 and PRC1 were identified as hub genes with significant prognostic value. Overexpression of GBAP1 in HCC was confirmed in 21 paired clinical tissues and liver cancer or normal cell lines. The inhibition of GBAP1 expression reduced HCC cell proliferation and promoted apoptosis by inactivating the PI3K/AKT pathway in vitro and in vivo. Therefore, GBAP1 has a pro-oncogenic function in HCC and is a candidate prognostic biomarker and therapeutic target.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Perfilação da Expressão Gênica , Biomarcadores Tumorais/metabolismo , Carcinógenos , Regulação Neoplásica da Expressão Gênica , Biologia Computacional
6.
Acta Biomater ; 167: 534-550, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302734

RESUMO

Currently, the treatment of triple-negative breast cancer (TNBC) is limited by the special pathological characteristics of this disease. In recent years, photodynamic therapy (PDT) has created new hope for the treatment of TNBC. Moreover, PDT can induce immunogenic cell death (ICD) and improve tumor immunogenicity. However, even though PDT can improve the immunogenicity of TNBC, the inhibitory immune microenvironment of TNBC still weakens the antitumor immune response. Therefore, we used the neutral sphingomyelinase inhibitor GW4869 to inhibit the secretion of small extracellular vesicles (sEVs) by TNBC cells to improve the tumor immune microenvironment and enhance antitumor immunity. In addition, bone mesenchymal stem cell (BMSC)-derived sEVs have good biological safety and a strong drug loading capacity, which can effectively improve the efficiency of drug delivery. In this study, we first obtained primary BMSCs and sEVs, and then the photosensitizers Ce6 and GW4869 were loaded into the sEVs by electroporation to produce immunomodulatory photosensitive nanovesicles (Ce6-GW4869/sEVs). When administered to TNBC cells or orthotopic TNBC models, these photosensitive sEVs could specifically target TNBC and improve the tumor immune microenvironment. Moreover, PDT combined with GW4869-based therapy showed a potent synergistic antitumor effect mediated by direct killing of TNBC and activation of antitumor immunity. Here, we designed photosensitive sEVs that could target TNBC and regulate the tumor immune microenvironment, providing a potential approach for improving the effectiveness of TNBC treatment. STATEMENT OF SIGNIFICANCE: We designed an immunomodulatory photosensitive nanovesicle (Ce6-GW4869/sEVs) with the photosensitizer Ce6 to achieve photodynamic therapy and the neutral sphingomyelinase inhibitor GW4869 to inhibit the secretion of small extracellular vesicles (sEVs) by triple-negative breast cancer (TNBC) cells to improve the tumor immune microenvironment and enhance antitumor immunity. In this study, the immunomodulatory photosensitive nanovesicle could target TNBC cells and regulate the tumor immune microenvironment, thus providing a potential approach for improving the treatment effect in TNBC. We found that the reduction in tumor sEVs secretion induced by GW4869 improved the tumor-suppressive immune microenvironment. Moreover, similar therapeutic strategies can also be applied in other kinds of tumors, especially immunosuppressive tumors, which is of great value for the clinical translation of tumor immunotherapy.


Assuntos
Vesículas Extracelulares , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Esfingomielina Fosfodiesterase , Compostos de Anilina , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Esterases , Microambiente Tumoral , Linhagem Celular Tumoral
7.
Int J Nanomedicine ; 18: 489-503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733407

RESUMO

Background: Central nervous system tuberculosis (CNS-TB) is the most devastating form of extrapulmonary tuberculosis. Rifampin (RIF) is a first-line antimicrobial agent with potent bactericidal action. Nonetheless, the blood-brain barrier (BBB) limits the therapeutic effects on CNS-TB. Exosomes, however, can facilitate drug movements across the BBB. In addition, exosomes show high biocompatibility and drug-loading capacity. They can also be modified to increase drug delivery efficacy. In this study, we loaded RIF into exosomes and modified the exosomes with a brain-targeting peptide to improve BBB permeability of RIF; we named these exosomes ANG-Exo-RIF. Methods: Exosomes were isolated from the culture medium of BMSCs by differential ultracentrifugation and loaded RIF by electroporation and modified ANG by chemical reaction. To characterize ANG-Exo-RIF, Western blot (WB), nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) were performed. Bend.3 cells were incubated with DiI labeled ANG-Exo-RIF and then fluorescent microscopy and flow cytometry were used to evaluate the targeting ability of ANG-Exo-RIF in vitro. Fluorescence imaging and frozen section were used to evaluate the targeting ability of ANG-Exo-RIF in vivo. MIC and MBC were determined through microplate alamar blue assay (MABA). Results: A novel exosome-based nanoparticle was developed. Compared with untargeted exosomes, the targeted exosomes exhibited high targeting capacity and permeability in vitro and in vivo. The MIC and MBC of ANG-Exo-RIF were 0.25 µg/mL, which were sufficient to meet the clinical needs. Conclusion: In summary, excellent targeting ability, high antitubercular activity and biocompatibility endow ANG-Exo-RIF with potential for use in future translation-aimed research and provide hope for an effective CNS-TB treatment.


Assuntos
Exossomos , Tuberculose do Sistema Nervoso Central , Animais , Camundongos , Rifampina/farmacologia , Rifampina/uso terapêutico , Células Endoteliais , Peptídeos , Tuberculose do Sistema Nervoso Central/tratamento farmacológico
8.
World J Gastroenterol ; 28(37): 5403-5419, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36312831

RESUMO

Gastrointestinal cancer (GIC) is the most common cancer with a poor prognosis. Currently, surgery is the main treatment for GIC. However, the high rate of postoperative recurrence leads to a low five-year survival rate. In recent years, immunotherapy has received much attention. As the only immunotherapy drugs approved by the Food and Drug Administration (FDA), immune checkpoint blockade (ICB) drugs have great potential in cancer therapy. Nevertheless, the efficacy of ICB treatment is greatly limited by the low immunogenicity and immunosuppressive microenvironment of GIC. Therefore, the targets of immunotherapy have expanded from ICB to increasing tumor immunogenicity, increasing the recruitment and maturation of immune cells and reducing the proportion of inhibitory immune cells, such as M2-like macrophages, regulatory T cells and myeloid-derived suppressor cells. Moreover, with the development of nanotechnology, a variety of nanoparticles have been approved by the FDA for clinical therapy, so novel nanodrug delivery systems have become a research focus for anticancer therapy. In this review, we summarize recent advances in the application of immunotherapy-based nanoparticles in GICs, such as gastric cancer, hepatocellular carcinoma, colorectal cancer and pancreatic cancer, and described the existing challenges and future trends.


Assuntos
Carcinoma Hepatocelular , Neoplasias Gastrointestinais , Neoplasias Hepáticas , Nanopartículas , Humanos , Imunoterapia/efeitos adversos , Neoplasias Gastrointestinais/terapia , Neoplasias Hepáticas/terapia , Microambiente Tumoral
9.
Front Oncol ; 12: 841530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574316

RESUMO

Hepatocellular carcinoma is the third most common cause of cancer-related deaths in China and immune-based therapy can improve patient outcomes. In this study, we investigated the relationship between immunity-associated genes and hepatocellular carcinoma from the prognostic perspective. The data downloaded from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) and the Gene Expression Omnibus (GEO) was screened for gene mutation frequency using the maftools package. Immunity-associated eight-gene signature with strong prognostic ability was constructed and proved as an independent predictor of the patient outcome in LIHC. Seven genes in the immune-related eight-gene signature were strongly associated with the infiltration of M0 macrophages, resting mast cells, and regulatory T cells. Our research may provide clinicians with a quantitative method to predict the prognosis of patients with liver cancer, which can assist in the selection of the optimal treatment plan.

10.
J Nanobiotechnology ; 20(1): 214, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524277

RESUMO

Immunotherapy has gradually emerged as the most promising anticancer therapy. In addition to conventional anti-PD-1/PD-L1 therapy, anti-CTLA-4 therapy, CAR-T therapy, etc., immunotherapy can also be induced by stimulating the maturation of immune cells or inhibiting negative immune cells, regulating the tumor immune microenvironment and cancer vaccines. Lipid nanovesicle drug delivery system includes liposomes, cell membrane vesicles, bacterial outer membrane vesicles, extracellular vesicles and hybrid vesicles. Lipid nanovesicles can be used as functional vesicles for cancer immunotherapy, and can also be used as drug carriers to deliver immunotherapy drugs to the tumor site for cancer immunotherapy. Here, we review recent advances in five kinds of lipid nanovesicles in cancer immunotherapy and assess the clinical application prospects of various lipid nanovesicles, hoping to provide valuable information for clinical translation in the future.


Assuntos
Imunoterapia , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Lipídeos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
11.
Int J Nanomedicine ; 16: 7123-7135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712045

RESUMO

BACKGROUND: Inducing the immunogenic cell death of tumour cells can mediate the occurrence of antitumour immune responses and make the therapeutic effect more significant. Therefore, the development of treatments that can induce ICD to destroy tumour cells most effectively is promising. Previously, a new type of pH-sensitive polymersome was designed for the treatment of glioblastoma which represents a promising nanoplatform for future translational research in glioblastoma therapy. In this study, the aim of this work was to analyse whether chemoradiotherapy of the novel pH-sensitive cargo-loaded polymersomes can induce ICD. METHODS: Cell death in U87-MG and G422 cells was induced by Au-DOX@PO-ANG, and cell death was analysed by CCK-8 and flow cytometry. The release of CRT was determined by using laser scanning confocal microscopy and flow cytometry. ELISA kits were used to detect the release of HMGB1 and ATP. The dying cancer cells treated with different treatments were cocultured with bone-marrow-derived dendritic cells (BMDCs), and then flow cytometry was used to determine the maturation rate of BMDCs (CD11c+CD86+CD80+) to analyse the in vitro immunogenicity. Tumour vaccination experiments were used to evaluate the ability of Au-DOX@PO-ANG to induce ICD in vivo. RESULTS: We determined the optimal treatment strategy to evaluate the ability of chemotherapy combined with radiotherapy to induce ICD and dying cancer cells induced by Au-DOX@PO-ANG+RT could induce calreticulin eversion to the cell membrane, promote the release of HMGB1 and ATP, and induce the maturation of BMDCs. Using dying cancer cells induced by Au-DOX@PO-ANG+RT, we demonstrate the efficient vaccination potential of ICD in vivo. CONCLUSION: These results identify Au-DOX@PO-ANG as a novel immunogenic cell death inducer in vitro and in vivo that could be effectively combined with RT in cancer therapy.


Assuntos
Glioblastoma , Morte Celular Imunogênica , Linhagem Celular Tumoral , Quimiorradioterapia , Glioblastoma/terapia , Humanos , Concentração de Íons de Hidrogênio
12.
Front Bioeng Biotechnol ; 9: 691091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422777

RESUMO

Cancer stem cells (CSCs) are thought to be responsible for the recurrence of liver cancer, highlighting the urgent need for the development of effective treatment regimens. In this study, 17-allylamino-17-demethoxygeldanamycin (17-AAG) and thermosensitive magnetoliposomes (TMs) conjugated to anti-CD90 (CD90@17-AAG/TMs) were developed for temperature-responsive CD90-targeted synergetic chemo-/magnetic hyperthermia therapy and simultaneous imaging in vivo. The targeting ability of CD90@DiR/TMs was studied with near-infrared (NIR) resonance imaging and magnetic resonance imaging (MRI), and the antitumor effect of CD90@17-AAG/TM-mediated magnetic thermotherapy was evaluated in vivo. After treatment, the tumors were analyzed with Western blotting, hematoxylin and eosin staining, and immunohistochemical (IHC) staining. The relative intensity of fluorescence was approximately twofold higher in the targeted group than in the non-targeted group, while the T 2 relaxation time was significantly lower in the targeted group than in the non-targeted group. The combined treatment of chemotherapy, thermotherapy, and targeting therapy exhibited the most significant antitumor effect as compared to any of the treatments alone. The anti-CD90 monoclonal antibody (mAb)-targeted delivery system, CD90@17-AAG/TMs, exhibited powerful targeting and antitumor efficacies against CD90+ liver cancer stem cells in vivo.

13.
J Nanobiotechnology ; 19(1): 147, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011362

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive tumor with extremely high mortality that results from its lack of effective therapeutic targets. As an adhesion molecule related to tumorigenesis and tumor metastasis, cluster of differentiation-44 (also known as CD44) is overexpressed in TNBC. Moreover, CD44 can be effectively targeted by a specific hyaluronic acid analog, namely, chitosan oligosaccharide (CO). In this study, a CO-coated liposome was designed, with Photochlor (HPPH) as the 660 nm light mediated photosensitizer and evofosfamide (also known as TH302) as the hypoxia-activated prodrug. The obtained liposomes can help diagnose TNBC by fluorescence imaging and produce antitumor therapy by synergetic photodynamic therapy (PDT) and chemotherapy. RESULTS: Compared with the nontargeted liposomes, the targeted liposomes exhibited good biocompatibility and targeting capability in vitro; in vivo, the targeted liposomes exhibited much better fluorescence imaging capability. Additionally, liposomes loaded with HPPH and TH302 showed significantly better antitumor effects than the other monotherapy groups both in vitro and in vivo. CONCLUSION: The impressive synergistic antitumor effects, together with the superior fluorescence imaging capability, good biocompatibility and minor side effects confers the liposomes with potential for future translational research in the diagnosis and CD44-overexpressing cancer therapy, especially TNBC.


Assuntos
Quitosana/farmacologia , Lipossomos/química , Nitroimidazóis/farmacologia , Oligossacarídeos/farmacologia , Mostardas de Fosforamida/farmacologia , Fotoquimioterapia/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Quitosana/química , Feminino , Humanos , Receptores de Hialuronatos , Ácido Hialurônico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanomedicina , Nitroimidazóis/química , Oligossacarídeos/química , Imagem Óptica , Mostardas de Fosforamida/química , Fármacos Fotossensibilizantes/química , Pró-Fármacos/química , Neoplasias de Mama Triplo Negativas/patologia
14.
J Nanobiotechnology ; 19(1): 29, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482822

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most invasive primary intracranial tumor, and its effective treatment is one of the most daunting challenges in oncology. The blood-brain barrier (BBB) is the main obstacle that prevents the delivery of potentially active therapeutic compounds. In this study, a new type of pH-sensitive polymersomes has been designed for glioblastoma therapy to achieve a combination of radiotherapy and chemotherapy for U87-MG human glioblastoma xenografts in nude mice and significantly increased survival time. RESULTS: The Au-DOX@PO-ANG has a good ability to cross the blood-brain barrier and target tumors. This delivery system has pH-sensitivity and the ability to respond to the tumor microenvironment. Gold nanoparticles and doxorubicin are designed as a complex drug. This type of complex drug improve the radiotherapy (RT) effect of glioblastoma. The mice treated with Au-DOX@PO-ANG NPs have a significant reduction in tumor volume. CONCLUSION: In summary, a new pH-sensitive drug delivery system was fabricated for the treatment of glioblastoma. The new BBB-traversing drug delivery system potentially represents a novel approach to improve the effects of the treatment of intracranial tumors and provides hope for glioblastoma treatment.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/terapia , Preparações de Ação Retardada/metabolismo , Doxorrubicina/administração & dosagem , Glioblastoma/terapia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Quimiorradioterapia , Preparações de Ação Retardada/química , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptídeos/química , Peptídeos/metabolismo , Microambiente Tumoral/efeitos dos fármacos
16.
Biomater Sci ; 6(12): 3273-3283, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30345998

RESUMO

Autophagy induced by titanium dioxide nanoparticles (TiO2 NPs) has been realized nowadays, but the underlying mechanisms remain largely unknown. Animal studies have confirmed that autophagy might be an important mechanism to impair placenta development, but the reversal of damage is not clear. Here, we used human HTR-8/SVneo (HTR) cells as a proper model to explore how autophagy is regulated in TiO2 NP-exposed human placenta cells. Our studies showed that TiO2 NPs could enter HTR cells and locate in cytoplasm. Although they did not affect cell viability even under 100 µg ml-1, autophagy was observed and cell migration ability was severely impaired. Further study showed that TiO2 NPs increased the expressions of both miR-96-5p and miR-101-3p and then, they targeted mTOR and decreased the expression of mTOR proteins. In addition, miR-96-5p also targeted Bcl-2 to down-regulate Bcl-2 protein level, which is also a key regulator of autophagy. We proved that when two microRNA inhibitors were added, cell autophagy was, to a greater extent, reversed compared with the result when one inhibitor was added, and the cell migration ability was also reversed to a greater degree. Our studies revealed that TiO2 NPs might impair placenta development via autophagy. Moreover, miR-96-5p as well as miR-101-3p may act as potential targets to reverse TiO2 NP-induced autophagy and placenta dysfunction.


Assuntos
Autofagia , Movimento Celular , Nanopartículas Metálicas/química , MicroRNAs/genética , Titânio/química , Trofoblastos/metabolismo , Células Cultivadas , Humanos , Nanopartículas Metálicas/efeitos adversos , Trofoblastos/citologia
17.
Target Oncol ; 13(4): 481-494, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29992403

RESUMO

BACKGROUND: Ovarian cancer is a common gynecologic malignancy with poor prognosis, requiring innovative new therapeutic strategies. Temperature-controlled drug delivery to cancer cells represents a novel, promising, targeted treatment approach. OBJECTIVE: We prepared folate receptor-targeted thermosensitive liposomes wrapped with the HSP90 inhibitor 17-AAG and superparamagnetic material (17-AAG/MTSLs-FA), and tested the efficacy of these targeted magnetoliposomes in vitro and in vivo. METHODS: Magnetic thermosensitive liposomes wrapped with 17-AAG were coprecipitated with Fe3O4 magnetic nanoparticles and prepared by a rotary evaporation method. Experiments were conducted with SKOV3 human ovarian cancer cells and MCF7 human breast carcinoma cells to evaluate the anti-tumor effects. RESULTS: 17-AAG/MTSLs-FA prepared in this study met the basic requirements for therapeutic application. The preparation method is relatively simple and the raw materials are readily available. The product exhibited strong magnetism, high encapsulation efficiencies, and satisfactory performance. The liposomes combined with hyperthermia significantly inhibited the proliferation of SKOV3 cells and induced apoptosis. Experiments using a mouse subcutaneous model as well as an ascites tumor xenograft model indicated that 17-AAG/MTSLs-FA was stable in vivo and effectively targeted tumor tissues expressing the folate receptor. CONCLUSIONS: Folic acid-conjugated 17-AAG magnetic thermosensitive liposomes in combination with an alternating magnetic field for heating can achieve a synergistic anti-tumor effect of chemotherapy and heat treatment, potentially offering a new method for ovarian cancer treatment.


Assuntos
Benzoquinonas/administração & dosagem , Benzoquinonas/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/metabolismo , Hipertermia Induzida/métodos , Lactamas Macrocíclicas/administração & dosagem , Lactamas Macrocíclicas/química , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Neoplasias Ovarianas/terapia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Receptores de Folato com Âncoras de GPI/metabolismo , Humanos , Lipossomos/administração & dosagem , Lipossomos/química , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Distribuição Aleatória , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biomaterials ; 178: 302-316, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29982104

RESUMO

Currently, glioma treatment is limited by two main factors: timely detection at onset or relapse and restriction of drugs by the blood-brain barrier (BBB) from entering the brain and influencing tumor growth. However, a safe BBB-traversing drug delivery system has brought new hope to glioma treatment. Exosomes have strong cargo-loading capacity and have the ability to cross the BBB. They can also be conferred with the ability for targeted delivery. Therefore, exosomes have great promise to be a targeted drug delivery vehicles. In this study, we firstly loaded superparamagnetic iron oxide nanoparticles (SPIONs) and curcumin (Cur) into exosomes and then conjugated the exosome membrane with neuropilin-1-targeted peptide (RGERPPR, RGE) by click chemistry to obtain glioma-targeting exosomes with imaging and therapeutic functions. When administered to glioma cells and orthotopic glioma models, we found that these engineered exosomes could cross the BBB smoothly and provided good results for targeted imaging and therapy of glioma. Furthermore, SPION-mediated magnetic flow hyperthermia (MFH) and Cur-mediated therapy also showed a potent synergistic antitumor effect. Therefore, the diagnostic and therapeutic effects on glioma were significantly improved, while reducing the side effects. We have designed a new type of glioma-targeting exosomes, which can carry nanomaterials and chemical agents for simultaneous diagnosis and treatment of glioma, thus providing a potential approach for improving the diagnosis and treatment effects of intracranial tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Exossomos/metabolismo , Glioma/diagnóstico por imagem , Glioma/terapia , Terapia de Alvo Molecular , Neuropilina-1/metabolismo , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Curcumina/uso terapêutico , Exossomos/ultraestrutura , Feminino , Glioma/patologia , Humanos , Estimativa de Kaplan-Meier , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptídeos/química , Células RAW 264.7 , Reprodutibilidade dos Testes
19.
Nanoscale ; 10(14): 6511-6523, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29569668

RESUMO

Hepatocellular carcinoma (HCC) is frequently metastatic once diagnosed and less likely to respond to curative surgery, emphasizing the need for the development of more sensitive and effective diagnostic and therapeutic strategies. Epithelial cell adhesion molecule (EpCAM) is deemed as the biomarker of cancer stem cells (CSCs), which are mainly responsible for the recurrence, metastasis and prognosis of HCC. In this study, we discuss the use of mitoxantrone (MX), an antitumor drug and a photosensitizer, for designing upconversion nanoparticle-based micelles grafted with the anti-EpCAM antibody, for dual-modality magnetic resonance/upconversion luminescence (MR/UCL)-guided synergetic chemotherapy and photodynamic therapy (PDT). The obtained micelles exhibit good biocompatibility, high specificity to HCC cells and superior fluorescent/magnetic properties in vitro. In vivo results demonstrate that the targeted micelles exhibited much better MR/UCL imaging qualities compared to the nontargeted micelles after the intravenous injection. More importantly, PEGylated UCNP micelles loaded with MX and grafted with anti-EpCAM antibody, denoted as anti-EpCAM-UPGs-MX, showcased the most effective synergetic antitumor efficacy compared with other treatment groups both in vitro and vivo. The remarkable antitumor effect, coupled with superior simultaneous dual-modality MR/UCL imaging as well as good biocompatibility and negligible toxicity, makes the UPG micelles promising for future translational research in HCC diagnosis and therapy.


Assuntos
Carcinoma Hepatocelular/terapia , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas/terapia , Micelas , Nanopartículas , Fotoquimioterapia , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/imunologia , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Luminescência , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitoxantrona/administração & dosagem , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/terapia , Células RAW 264.7 , Nanomedicina Teranóstica
20.
J Nanobiotechnology ; 16(1): 7, 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29378593

RESUMO

BACKGROUND: Pancreatic cancer remains the leading cause of cancer-related deaths, the existence of cancer stem cells and lack of highly efficient early detection may account for the poor survival rate. Gadolinium ion-doped upconversion nanoparticles (UCNPs) provide opportunities for combining fluorescent with magnetic resonance imaging, and they can improve the diagnostic efficacy of early pancreatic cancer. In addition, as one transmembrane glycoprotein overexpressed on the pancreatic cancer stem cells, CD326 may act as a promising target. In this study, we developed a facile strategy for developing anti-human CD326-grafted UCNPs-based micelles and performed the corresponding characterizations. After conducting in vitro and vivo toxicology experiments, we also examined the active targeting capability of the micelles upon dual-mode imaging in vivo. RESULTS: We found that the micelles owned superior imaging properties and long-time stability based on multiple characterizations. By performing in vitro and vivo toxicology assay, the micelles had good biocompatibility. We observed more cellular uptake of the micelles with the help of anti-human CD326 grafted onto the micelles. Furthermore, we successfully concluded that CD326-conjugated micelles endowed promising active targeting ability by conducting dual-mode imaging in human pancreatic cancer xenograft mouse model. CONCLUSIONS: With good biocompatibility and excellent imaging properties of the micelles, our results uncover efficient active homing of those micelles after intravenous injection, and undoubtedly demonstrate the as-obtained micelles holds great potential for early pancreatic cancer diagnosis in the future and would pave the way for the following biomedical applications.


Assuntos
Micelas , Imagem Multimodal , Nanopartículas/química , Neoplasias Pancreáticas/diagnóstico , Animais , Linhagem Celular Tumoral , Difusão Dinâmica da Luz , Endocitose , Feminino , Humanos , Luminescência , Imageamento por Ressonância Magnética , Magnetismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/ultraestrutura , Fenômenos Ópticos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/ultraestrutura , Células RAW 264.7 , Distribuição Tecidual , Testes de Toxicidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA