Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1169411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082218

RESUMO

Wearable flexible sensors are widely used in several applications such as physiological monitoring, electronic skin, and telemedicine. Typically, flexible sensors that are made of elastomeric thin-films lack sufficient permeability, which leads to skin inflammation, and more importantly, affects signal detection and consequently, reduces the sensitivity of the sensor. In this study, we designed a flexible nanofibrous membrane with a high air permeability (6.10 mm/s), which could be effectively used to monitor human motion signals and physiological signals. More specifically, a flexible membrane with a point (liquid metal nanoparticles)-line (carbon nanotubes)-plane (liquid metal thin-film) multiscale conductive structure was fabricated by combining liquid metal (LM) and carbon nanotubes (CNTs) with a polyurethane (PU) nanofibrous membrane. Interestingly, the excellent conductivity and fluidity of the liquid metal enhanced the sensitivity and stability of the membrane. More precisely, the gauge factor (GF) values of the membrane is 3.0 at 50% strain and 14.0 at 400% strain, which corresponds to a high strain sensitivity within the whole range of deformation. Additionally, the proposed membrane has good mechanical properties with an elongation at a break of 490% and a tensile strength of 12 MPa. Furthermore, the flexible membrane exhibits good biocompatibility and can efficiently monitor human health signals, thereby indicating potential for application in the field of wearable electronic devices.

2.
Nanoscale ; 7(44): 18677-85, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26499788

RESUMO

The development of coating materials for neural interfaces has been a pursued to improve the electrical, mechanical and biological performances. For these goals, a bioactive coating was developed in this work featuring a poly(3,4-ethylenedioxythiophene) (PEDOT)/carbon nanotube (CNT) composite and covalently bonded YIGSR and RGD. Its biological effect and electrical characteristics were assessed in vivo on microwire arrays (MWA). The coated electrodes exhibited a significantly higher charge storage capacity (CSC) and lower electrochemical impedance at 1 kHz which are desired to improve the stimulating and recording performances, respectively. Acute neural recording experiments revealed that coated MWA possess a higher signal/noise ratio capturing spikes undetected by uncoated electrodes. Moreover, coated MWA possessed more active sites and single units, and the noise floor of coated electrodes was lower than that of uncoated electrodes. There is little information in the literature concerning the chronic performance of bioactively modified neural interfaces in vivo. Therefore in this work, chronic in vivo tests were conducted and the PEDOT/PSS/MWCNT-polypeptide coated arrays exhibited excellent performances with the highest mean maximal amplitude from day 4 to day 12 during which the acute response severely compromised the performance of the electrodes. In brief, we developed a simple method of covalently bonding YIGSR and RGD to a PEDOT/PSS/MWCNT-COOH composite improving both the biocompatibility and electrical performance of the neural interface. Our findings suggest that YIGSR and RGD modified PEDOT/PSS/MWCNT is a promising bioactivated composite coating for neural recording and stimulating.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Teste de Materiais , Nanotubos de Carbono/química , Nanofios/química , Neurônios/metabolismo , Oligopeptídeos , Polímeros , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neurônios/citologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Células PC12 , Polímeros/química , Polímeros/farmacologia , Ratos
3.
PLoS One ; 8(11): e81420, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260578

RESUMO

Intercalated disk (ID), which electromechanically couples cardiomyocytes into a functional syncitium, is closely related to normal morphology and function of engineered heart tissues (EHTs), but the development mode of ID in the three-dimensional (3D) EHTs is still unclear. In this study, we focused on the spatiotemporal development of the ID in the EHTs constructed by mixing neonatal rat cardiomyocytes with collagen/Matrigel, and investigated the effect of 3D microenvironment provided by collagen/Matrigel matrix on the formation of ID. By histological and immmunofluorescent staining, the spatiotemporal distribution of ID-related junctions was detected. Furthermore, the ultra-structures of the ID in different developmental stages were observed under transmission electron microscope. In addition, the expression of the related proteins was quantitatively analyzed. The results indicate that accompanying the re-organization of cardiomyocytes in collagen/Matrigel matrix, the proteins of adherens junctions, desmosomes and gap junctions redistributed from diffused distribution to intercellular regions to form an integrated ID. The adherens junction and desmosome which are related with mechanical connection appeared earlier than gap junction which is essential for electrochemical coupling. These findings suggest that the 3D microenvironment based on collagen/Matrigel matrix could support the ordered assembly of the ID in EHTs and have implications for comprehending the ordered and coordinated development of ID during the functional organization of EHTs.


Assuntos
Colágeno/química , Laminina/química , Miócitos Cardíacos/citologia , Proteoglicanas/química , Engenharia Tecidual , Alicerces Teciduais , Junções Aderentes/metabolismo , Junções Aderentes/ultraestrutura , Animais , Biomarcadores/metabolismo , Caderinas/metabolismo , Microambiente Celular , Conexina 43/metabolismo , Desmossomos/metabolismo , Desmossomos/ultraestrutura , Combinação de Medicamentos , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Coração/anatomia & histologia , Coração/fisiologia , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/metabolismo , Placofilinas/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA