Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Hepatocell Carcinoma ; 11: 399-409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435682

RESUMO

Purpose: Local in combination with systemic therapy might be an option for patients with advanced unresectable hepatocellular carcinoma (uHCC). This study examined the clinical benefits and adverse events (AEs) of first-line transarterial embolization (TAE) and hepatic arterial infusion chemotherapy (HAIC) combined with atezolizumab (Atezo) and bevacizumab (Bev) in patients with uHCC of a diameter larger than 8 cm. Patients and methods: This retrospective study included patients with uHCC of a diameter larger than 8 cm who were treated with first-line Atezo-Bev and TAE+HAIC at the First Affiliated Hospital of Sun Yat-Sen University between September 30, 2019, and September 30, 2022. Progression-free survival (PFS), overall survival (OS), tumor response according to mRECIST, and AEs were analyzed. Multivariable Cox analyses were performed to examine the factors associated with PFS. Results: Thirty patients were included. The objective response rate (ORR) was 74.4% (95% confidence interval [CI], 59.3%-89.5%), and the disease control rate (DCR) was 93.3% (95% CI, 85.4%-98.6%). The median follow-up was 11.4 (inter-quartile range [IQR], 5.5-17.9) months. The median PFS was 6.8 (95% CI, 2.6-11.1) months. The 3-, 6-, 9-, and 12-month survival rates were 86.2%, 82.5%, 68.6%, and 60%, respectively. The median OS was not estimated. Extrahepatic metastasis was independently associated with PFS (hazard ratio [HR]=3.468, 95% CI, 1.001-12.023). The most common AEs were fever (46.7%). Grade 4 AEs occurred one time as hematemesis but no 5 AEs were observed. Conclusion: Atezo-Bev combined with TAE and HAIC might benefit patients with uHCC of a diameter larger than 8 cm, with manageable AEs.

2.
J Agric Food Chem ; 72(12): 6463-6470, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501643

RESUMO

Eugenol, the main component of essential oil from the Syzygium aromaticum clove tree, has great potential as an alternative bioresource feedstock for biosynthesis purposes. Although eugenol degradation to ferulic acid was investigated, an efficient method for directly converting eugenol to targeted natural products has not been established. Herein we identified the inherent inhibitions by simply combining the previously reported ferulic acid biosynthetic pathway and vanillin biosynthetic pathway. To overcome this, we developed a novel biosynthetic pathway for converting eugenol into vanillin, by introducing cinnamoyl-CoA reductase (CCR), which catalyzes conversion of coniferyl aldehyde to feruloyl-CoA. This approach bypasses the need for two catalysts, namely coniferyl aldehyde dehydrogenase and feruloyl-CoA synthetase, thereby eliminating inhibition while simplifying the pathway. To further improve efficiency, we enhanced CCR catalytic efficiency via directed evolution and leveraged an artificialvanillin biosensor for high-throughput screening. Switching the cofactor preference of CCR from NADP+ to NAD+ significantly improved pathway efficiency. This newly designed pathway provides an alternative strategy for efficiently biosynthesizing feruloyl-CoA-derived natural products using eugenol.


Assuntos
Acil Coenzima A , Benzaldeídos , Vias Biossintéticas , Ácidos Cumáricos , Eugenol , Eugenol/metabolismo
3.
Microb Biotechnol ; 17(3): e14427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465475

RESUMO

Optimal transcriptional regulatory circuits are expected to exhibit stringent control, maintaining silence in the absence of inducers while exhibiting a broad induction dynamic range upon the addition of effectors. In the Plac /LacI pair, the promoter of the lac operon in Escherichia coli is characterized by its leakiness, attributed to the moderate affinity of LacI for its operator target. In response to this limitation, the LacI regulatory protein underwent engineering to enhance its regulatory properties. The M7 mutant, carrying I79T and N246S mutations, resulted in the lac promoter displaying approximately 95% less leaky expression and a broader induction dynamic range compared to the wild-type LacI. An in-depth analysis of each mutation revealed distinct regulatory profiles. In contrast to the wild-type LacI, the M7 mutant exhibited a tighter binding to the operator sequence, as evidenced by surface plasmon resonance studies. Leveraging the capabilities of the M7 mutant, a high-value sugar biosensor was constructed. This biosensor facilitated the selection of mutant galactosidases with approximately a seven-fold improvement in specific activity for transgalactosylation. Consequently, this advancement enabled enhanced biosynthesis of galacto-oligosaccharides (GOS).


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Repressores Lac/genética , Repressores Lac/química , Repressores Lac/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética
4.
Front Oncol ; 13: 1235786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074645

RESUMO

Purpose: To investigate the efficacy and safety of combined treatment of anlotinib and transarterial chemoembolization (TACE) in patients with unresectable hepatocellular carcinoma (uHCC) associated with hepatitis B virus (HBV) infection. Methods: We retrospectively collected the data of 96 uHCC patients associated with HBV infection who received either TACE only (TO group; n = 64) or anlotinib combined with TACE (TA group; n = 32) from January 2017 to January 2021. The primary endpoint was overall survival (OS). The secondary outcomes included progression-free survival (PFS), tumor response according to modified Response Evaluation Criteria in Solid Tumors (mRECIST) and RECIST 1.1, and adverse events (AEs). Results: The median OS and median PFS were significantly longer in the TA group compared to the TO group (17.6 months vs. 9.4 months, p = 0.018; 6.7 months vs. 3.8 months, p = 0.003, respectively). In addition, the overall objective response rate (ORR) and disease control rate (DCR) numerically increased in the TA group (mRECIST, ORR 65.6% vs. 46.9%, p = 0.064, DCR 90.6% vs. 85.9%, p = 0.382; RECIST 1.1, ORR 46.9% vs. 15.6%, p = 0.001, DCR 90.6% vs. 85.9%, p = 0.382, respectively). It was worth noting that no treatment-related mortality occurred during the study. The most common AEs included elevated transaminases (56.3%), decreased appetite (46.9%), and abdominal pain (37.5%) in the TA group. Although the incidence rate of grade 3/4 AEs was higher in the TA group, all of them were controllable. Conclusions: The combination of anlotinib and TACE has shown promising results in improving outcomes for patients with HBV-related uHCC, as compared to TACE monotherapy. In addition, this combination therapy has demonstrated a controllable safety profile. However, further validation is urgently needed through randomized controlled trials with large sample sizes.

5.
Aging (Albany NY) ; 15(22): 13041-13058, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37980166

RESUMO

Currently, the roles of ZNF692 have been documented exclusively in lung, colon, and cervical cancers. However, its involvement in pan cancer remains unknown. In this study, we employed bioinformatics analysis and experimental validation to investigate the role of ZNF692 in pan cancer. Our findings revealed aberrant expression of ZNF692 across various types of cancer. High expression of ZNF692 was associated with poor overall survival (OS) in ACC, COAD, KIRC, LAML, and LIHC. ZNF692 exhibited promising diagnostic potential in certain tumor types. A significant correlation was observed between high ZNF692 expression and advanced stages of ACC, BLCA, KICH, KIRC, LIHC, and OV. The expression of ZNF692 exhibited a significant association with microsatellite instability (MSI) in eight types of cancer and tumor mutational burden (TMB) in ten types of cancer. A noteworthy correlation was observed between ZNF692 expression and immune infiltration as well as immune checkpoints. Amplification of ZNF692 emerged as the most frequent alteration in pan cancer. ZNF692 was implicated in various biological processes, cellular components, and molecular functions within the context of pan cancer. It is plausible that ZNF692 may contribute to chemotherapy and potentially be linked to chemoresistance. We constructed a competing endogenous RNA (ceRNA) network involving AC009403.11/miR-126-3p/ZNF692 in hepatocellular carcinoma (HCC). The expression of ZNF692 exhibited a notable upregulation in HCC cell lines. Aberrant expression of ZNF692 was observed across various types of cancer. ZNF692 holds potential as a valuable diagnostic, prognostic, and therapeutic target in the context of pan cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias do Colo do Útero , Feminino , Humanos , Biomarcadores , Carcinoma Hepatocelular/genética , Linhagem Celular , Neoplasias Hepáticas/genética
6.
J Hepatocell Carcinoma ; 10: 1209-1222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533600

RESUMO

Purpose: The current therapeutic strategies for high-risk, unresectable hepatocellular carcinoma (HCC) patients demonstrate suboptimal outcomes. This study aimed to assess the clinical efficacy of the combined approach of hepatic arterial infusion chemotherapy (HAIC), lenvatinib, and tislelizumab, either with or without transhepatic arterial embolization (TAE), in managing HCC patients with portal vein tumor thrombus (PVTT) and significant tumor load. Patients and Methods: In this multicenter retrospective study, we analyzed patients diagnosed with primary, unresectable HCC presenting with PVTT and substantial tumor load who had undergone treatment with HAIC, lenvatinib, and tislelizumab, with or without TAE (referred to as the THLP or HLP group), between January 2019 and February 2022 across four medical centers in China. The outcomes included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and progression-free survival (PFS). Results: The study cohort comprised 100 patients, 50 each in the THLP and HLP groups. The THLP group demonstrated a significantly superior ORR (72% vs 52%, P=0.039). However, both groups exhibited comparable DCR (88% vs 76%, P=0.118), as assessed by the modified response evaluation criteria in solid tumors. The median OS and PFS for the entire cohort were 12.5 months (95% CI, 10.9-14.8) and 5.0 months (95% CI, 4.2-5.4), respectively. The THLP group exhibited a significantly extended OS (median, 14.1 vs 11.3 months, P=0.041) and PFS (median, 5.6 vs 4.4 months, P=0.037) in comparison to the HLP group. The most frequently reported treatment-related adverse events included abdominal pain and nausea, both reported by 59% of patients. Conclusion: The combination of HAIC, lenvatinib, tislelizumab, and TAE was feasible in HCC patients with PVTT and high tumor burden, with tolerable safety.

7.
Metab Eng ; 78: 235-247, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394056

RESUMO

cAMP receptor protein (CRP) is known as a global regulatory factor mainly mediating carbon source catabolism. Herein, we successfully engineered CRP to develop microbial chassis cells with improved recombinant biosynthetic capability in minimal medium with glucose as single carbon source. The obtained best-performing cAMP-independent CRPmu9 mutant conferred both faster cell growth and a 133-fold improvement in expression level of lac promoter in presence of 2% glucose, compared with strain under regulation of CRPwild-type. Promoters free from "glucose repression" are advantageous for recombinant expression, as glucose is a frequently used inexpensive carbon source in high-cell-density fermentations. Transcriptome analysis demonstrated that the CRP mutant globally rewired cell metabolism, displaying elevated tricarboxylic acid cycle activity; reduced acetate formation; increased nucleotide biosynthesis; and improved ATP synthesis, tolerance, and stress-resistance activity. Metabolites analysis confirmed the enhancement of glucose utilization with the upregulation of glycolysis and glyoxylate-tricarboxylic acid cycle. As expected, an elevated biosynthetic capability was demonstrated with vanillin, naringenin and caffeic acid biosynthesis in strains regulated by CRPmu9. This study has expanded the significance of CRP optimization into glucose utilization and recombinant biosynthesis, beyond the conventionally designated carbon source utilization other than glucose. The Escherichiacoli cell regulated by CRPmu9 can be potentially used as a beneficial chassis for recombinant biosynthesis.


Assuntos
Escherichia coli , Glucose , Glucose/genética , Glucose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicólise , Fermentação , Carbono/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica
8.
Metab Eng ; 74: 150-159, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36328294

RESUMO

Elegant controllable protein degradation tools have great applications in metabolic engineering and synthetic biology designs. SspB-mediated ClpXP proteolysis system is well characterized, and SspB acts as an adaptor tethering ssrA-tagged substrates to the ClpXP protease. This degron was applied in metabolism optimization, but the efficiency was barely satisfactory. Limited high-quality tools are available for controllable protein degradation. By coupling structure-guided modeling and directed evolution, we establish state-of-the-art high-throughput screening strategies for engineering both degradation efficiency and SspB-ssrA binding specificity of this degron. The reliability of our approach is confirmed by functional validation of both SspB and ssrA mutants using fluorescence assays and metabolic engineering of itaconic acid or ferulic acid biosynthesis. Isothermal titration calorimetry analysis and molecular modeling revealed that an appropriate instead of excessively strong interaction between SspB and ssrA benefited degradation efficiency. Mutated SspB-ssrA pairs with 7-22-fold higher binding KD than the wild-type pair led to higher degradation efficiency, revealing the advantage of directed evolution over rational design in degradation efficiency optimization. Furthermore, an artificial SspB-ssrA pair exhibiting low crosstalk of interactions with the wild-type SspB-ssrA pair was also developed. Efforts in this study have demonstrated the plasticity of SspB-ssrA binding pocket for designing high-quality controllable protein degradation tools. The obtained mutated degrons enriched the tool box of metabolic engineering designs.


Assuntos
Endopeptidase Clp , Proteínas de Escherichia coli , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteólise , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Reprodutibilidade dos Testes , Proteínas de Transporte/metabolismo
9.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2623-2632, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472283

RESUMO

α-L-rhamnosidase is a very important industrial enzyme that is widely distributed in a variety of organisms. α-L-rhamnosidase of different origins show functional diversity. For example, the optimal pH of α-L-rhamnosidase from bacteria is close to neutral or alkaline, while the optimal pH of α-L-rhamnosidase from fungi is in the acidic range. Furthermore, the enzymatic properties of α-L-rhamnosidases of different origins differ in terms of the optimal temperature, the thermal stability, and the substrate specificity, which determine the different applications of these enzymes. In this connection, it is crucial to elucidate the similarities and differences in the catalytic mechanism and substrate specificity of α-L-rhamnosidase of different origins through analyzing its enzymatic properties. Moreover, it is important to explore and understand the effects of aglycon and metal cations on enzyme activity and the competitive inhibition of L-rhamnose and glucose on enzymes. These knowledge can help discover α-L-rhamnosidase of industrial significance and promote its industrial application.


Assuntos
Glicosídeo Hidrolases , Ramnose , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Temperatura
10.
J Agric Food Chem ; 69(10): 3114-3123, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33666081

RESUMO

Transcriptional regulatory protein (TRP)-based whole-cell biosensors are widely used nowadays. Here, they were demonstrated to have great potential application in screening cell efflux and influx pumps for small molecules. First, a vanillin whole-cell biosensor was developed by altering the specificity of a TRP, VanR, and strains with improved vanillin productions that were selected from a random genome mutagenesis library by using this biosensor as a high-throughput screening tool. A high intracellular vanillin concentration was found to accumulate due to the inactivation of the AcrA protein, indicating the involvement of this protein in vanillin efflux. Then, the application of this biosensor was extended to explore efflux and influx pumps, combined with directed genome evolution. Elevated intracellular vanillin levels resulting from efflux pump inactivation or influx pump overexpression could be rapidly detected by the whole-cell biosensor, markedly facilitating the identification of genome targets related to small-molecule transmembrane transport, which is of great importance in metabolic engineering.


Assuntos
Benzaldeídos , Técnicas Biossensoriais , Engenharia Metabólica , Fatores de Transcrição/genética
11.
J Agric Food Chem ; 69(9): 2816-2825, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629856

RESUMO

Engineering an artificial microbial community for natural product production is a promising strategy. As mono- and dual-culture systems only gave non-detectable or minimal chlorogenic acid (CGA) biosynthesis, here, a polyculture of three recombinant Escherichia coli strains, acting as biosynthetic modules of caffeic acid (CA), quinic acid (QA), and CGA, was designed and used for de novo CGA biosynthesis. An influx transporter of 3-dehydroshikimic acid (DHS)/shikimic acid (SA), ShiA, was introduced into the QA module-a DHS auxotroph. The QA module proportion in the polyculture and CGA production were found to be dependent on ShiA expression, providing an alternative approach for controlling microbial community composition. The polyculture strategy avoids metabolic flux competition in the biosynthesis of two CGA precursors, CA and QA, and allows production improvement by balancing module proportions. The performance of this polyculture approach was superior to that of previously reported approaches of de novo CGA production.


Assuntos
Ácido Clorogênico , Microbiota , Escherichia coli/genética , Engenharia Metabólica , Ácido Quínico
12.
J Agric Food Chem ; 68(39): 10772-10779, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32864959

RESUMO

The biosynthetic efficiency of curcumin, a highly bioactive compound from the plant Curcuma longa, needs to be improved. In this study, we performed host cell and biosynthetic pathway engineering to improve curcumin biosynthesis. Using in vivo-directed evolution, the expression level of curcuminoid synthase (CUS), the rate-limiting enzyme in the curcumin biosynthetic pathway, was significantly improved. Furthermore, as curcumin is a highly hydrophobic compound, two cell membrane engineering strategies were applied to optimize the biosynthetic efficiency. Curcumin storage was increased by overexpression of monoglucosyldiacylglycerol synthase from Acholeplasma laidlawii, which optimized the cell membrane morphology. Furthermore, unsaturated fatty acid supplementation was used to enhance membrane fluidity, which greatly ameliorated the damaging effect of curcumin on the cell membrane. These two strategies enhanced curcumin biosynthesis and demonstrated an additive effect.


Assuntos
Curcumina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vias Biossintéticas , Ácidos Graxos Insaturados/metabolismo , Engenharia Metabólica
13.
Appl Microbiol Biotechnol ; 104(12): 5385-5393, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32338294

RESUMO

Butenoic acid is a short-chain unsaturated fatty acid and important precursor for pharmaceutical and other applications. Heterologous thioesterases are able to convert a fatty acid biosynthesis intermediate in Escherichia coli to butenoic acid. In order to acquire high titer and yield of the product, dynamically switching the metabolic flux from fatty acid biosynthesis pathway to butenoic acid is critical after achieving enough cell mass of the host. A previous developed switch for butenoic acid fermentation is based on triclosan molecule as the FabI inhibitor in the fatty acid biosynthesis cycle. However, triclosan is toxic to human, which may limit its pharmaceutical application. Alternatively, we here purposed a nontoxic switch of carbon flux by harnessing recently developed CRISPR interference (CRISPRi) approach. In our work, we constructed a CRISPRi/dCpf1-mediated dynamic metabolic switch to separate the host growth and production phase via switching the expression of the fabI gene in fatty acid biosynthesis pathway. After optimizing the programmable targets, the CRISPRi-based switch boosted the titer of butenoic acid by 6-fold (1.41 g/L) in fed-batch fermentation. Our work supported that the CRISPRi/dCpf1 switch could replace triclosan-based switch as a nontoxic switch for butenoic acid production, and outcompeted the later switch in the biomass accumulation of the host cell. Moreover, the CRISPRi/dCpf1 system was integrated into the chromosome of the host to improve its genetic stability for long-term fermentation and other applications.Key Points• A programmable metabolic switch was developed to replace the toxic chemical switch to separate the growth phase and production phase of the butenoic acid.• The programmable CRISPRi/dCpf1 switch was efficiently and stably integrated into the host genome to increase their genetic stability during fermentation.• The optimized metabolic switch simultaneously increased the host biomass and butenoic acid titer, and solved the paradox of the competition between growth and production.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos Insaturados/biossíntese , Engenharia Metabólica , Técnicas de Cultura Celular por Lotes , Biomassa , Vias Biossintéticas , Ciclo do Carbono , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/genética , Fermentação , Genoma Bacteriano , Microbiologia Industrial
14.
Nat Commun ; 11(1): 1515, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251291

RESUMO

Hydroxytyrosol is an antioxidant free radical scavenger that is biosynthesized from tyrosine. In metabolic engineering efforts, the use of the mouse tyrosine hydroxylase limits its production. Here, we design an efficient whole-cell catalyst of hydroxytyrosol in Escherichia coli by de-bottlenecking two rate-limiting enzymatic steps. First, we replace the mouse tyrosine hydroxylase by an engineered two-component flavin-dependent monooxygenase HpaBC of E. coli through structure-guided modeling and directed evolution. Next, we elucidate the structure of the Corynebacterium glutamicum VanR regulatory protein complexed with its inducer vanillic acid. By switching its induction specificity from vanillic acid to hydroxytyrosol, VanR is engineered into a hydroxytyrosol biosensor. Then, with this biosensor, we use in vivo-directed evolution to optimize the activity of tyramine oxidase (TYO), the second rate-limiting enzyme in hydroxytyrosol biosynthesis. The final strain reaches a 95% conversion rate of tyrosine. This study demonstrates the effectiveness of sequentially de-bottlenecking rate-limiting steps for whole-cell catalyst development.


Assuntos
Evolução Molecular Direcionada/métodos , Escherichia coli/enzimologia , Sequestradores de Radicais Livres/metabolismo , Engenharia Metabólica , Álcool Feniletílico/análogos & derivados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Vias Biossintéticas/genética , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Estudos de Viabilidade , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Álcool Feniletílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tirosina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido Vanílico/metabolismo
15.
Appl Microbiol Biotechnol ; 104(8): 3417-3431, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32103318

RESUMO

γ-Glutamylcysteine synthetase (γ-GCS) from Escherichia coli, which catalyzes the formation of L-glutamylcysteine from L-glutamic acid and L-cysteine, was engineered into an L-theanine synthase using L-glutamic acid and ethylamine as substrates. A high-throughput screening method using a 96-well plate was developed to evaluate the L-theanine synthesis reaction. Both site-saturation mutagenesis and random mutagenesis were applied. After three rounds of directed evolution, 13B6, the best-performing mutant enzyme, exhibited 14.6- and 17.0-fold improvements in L-theanine production and catalytic efficiency for ethylamine, respectively, compared with the wild-type enzyme. In addition, the specific activity of 13B6 for the original substrate, L-cysteine, decreased to approximately 14.6% of that of the wild-type enzyme. Thus, the γ-GCS enzyme was successfully switched to a specific L-theanine synthase by directed evolution. Furthermore, an ATP-regeneration system was introduced based on polyphosphate kinases catalyzing the transfer of phosphates from polyphosphate to ADP, thus lowering the level of ATP consumption and the cost of L-theanine synthesis. The final L-theanine production by mutant 13B6 reached 30.4 ± 0.3 g/L in 2 h, with a conversion rate of 87.1%, which has great potential for industrial applications.


Assuntos
Amida Sintases/metabolismo , Escherichia coli/enzimologia , Glutamato-Cisteína Ligase/metabolismo , Glutamatos/biossíntese , Trifosfato de Adenosina/metabolismo , Amida Sintases/genética , Catálise , Evolução Molecular Direcionada , Escherichia coli/genética , Etilaminas/metabolismo , Glutamato-Cisteína Ligase/genética , Ácido Glutâmico/metabolismo , Ensaios de Triagem em Larga Escala , Microbiologia Industrial , Engenharia de Proteínas
16.
Metab Eng ; 57: 239-246, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837400

RESUMO

To mimic the delicately regulated metabolism in nature for improved efficiency, artificial and customized regulatory components for dynamically controlling metabolic networks in multiple layers are essential in laboratory engineering. For this purpose, a novel regulatory component for controlling vanillin biosynthetic pathway was developed through directed evolution, which was responsive to both the product vanillin and substrate ferulic acid, with different capacities. This regulatory component facilitated pathway expression via dynamic control of the intracellular substrate and product concentrations. As vanillin is an antimicrobial compound, low pathway expression and vanillin formation levels enabled better cell growth at an early stage, and the product feedback-activated pathway expression at later stages significantly improved biosynthesis efficiency. This novel multiple-layer dynamic control was demonstrated effective in managing the trade-off between cell growth and production, leading to improved cell growth and vanillin production compared to the conventional or quorum-sensing promoter-controlled pathway. The multiple-layer dynamic control enabled by designed regulatory components responsive to multiple signals shows potential for wide applications in addition to the dynamic controls based on biosynthetic intermediate sensing and quorum sensing reported to date.


Assuntos
Benzaldeídos/metabolismo , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Percepção de Quorum , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Regiões Promotoras Genéticas
17.
Nat Commun ; 10(1): 960, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814511

RESUMO

Genetic diversity is a result of evolution, enabling multiple ways for one particular physiological activity. Here, we introduce this strategy into bioengineering. We design two hydroxytyrosol biosynthetic pathways using tyrosine as substrate. We show that the synthetic capacity is significantly improved when two pathways work simultaneously comparing to each individual pathway. Next, we engineer flavin-dependent monooxygenase HpaBC for tyrosol hydroxylase, tyramine hydroxylase, and promiscuous hydroxylase active on both tyrosol and tyramine using directed divergent evolution strategy. Then, the mutant HpaBCs are employed to catalyze two missing steps in the hydroxytyrosol biosynthetic pathways designed above. Our results demonstrate that the promiscuous tyrosol/tyramine hydroxylase can minimize the cell metabolic burden induced by protein overexpression and allow the biosynthetic carbon flow to be divided between two pathways. Thus, the efficiency of the hydroxytyrosol biosynthesis is significantly improved by rearranging the metabolic flux among multiple pathways.


Assuntos
Oxigenases de Função Mista/metabolismo , Álcool Feniletílico/análogos & derivados , Vias Biossintéticas , Evolução Molecular Direcionada , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Oxigenases de Função Mista/genética , Modelos Biológicos , Álcool Feniletílico/metabolismo , Especificidade por Substrato
18.
Appl Microbiol Biotechnol ; 103(7): 3205-3213, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30770965

RESUMO

Transcriptional regulatory proteins (TRPs)-based whole-cell biosensors are promising owing to their specificity and sensitivity, but their applications are currently limited. Herein, TRPs were adapted for the extracellular detection of a disease biomarker, uric acid, and a typical pesticide residue, carbaryl. A mutant regulatory protein that specifically recognizes carbaryl as its non-natural effector and activates transcription upon carbaryl binding was developed by engineering the regulatory protein TtgR from Pseudomonas putida. The TtgR mutant responsive to carbaryl and a regulatory protein responsive to uric acid were used for in vitro detection, based on their allosteric binding of operator DNA and inducer molecules. Based on the quantitative polymerase chain reactions (qPCRs) output, the minimum detectable concentration was between 1 nM-1 µM and 1-10 nM for uric acid and carbaryl, respectively. Our results demonstrated that engineering the effector specificity of regulatory proteins is a potential technique for generating molecular recognition elements for not only in vivo but also in vitro applications.


Assuntos
Proteínas de Bactérias/genética , Biomarcadores/análise , Resíduos de Praguicidas/análise , Proteínas Repressoras/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Carbaril/análise , Mutação , Reação em Cadeia da Polimerase , Pseudomonas putida/genética , Fatores de Transcrição/genética , Ácido Úrico/análise
19.
Biotechnol Lett ; 40(7): 1101-1107, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29700725

RESUMO

OBJECTIVES: To improve the quality of mutagenesis libraries in directed evolution strategy. RESULTS: In the process of library transformation, transformants which have been shown to take up more than one plasmid might constitute more than 20% of the constructed library, thereby extensively impairing the quality of the library. We propose a practical transformation method to prevent the occurrence of multiple-plasmid transformants while maintaining high transformation efficiency. A visual library model containing plasmids expressing different fluorescent proteins was used. Multiple-plasmid transformants can be reduced through optimizing plasmid DNA amount used for transformation based on the positive correlation between the occurrence frequency of multiple-plasmid transformants and the logarithmic ratio of plasmid molecules to competent cells. CONCLUSIONS: This method provides a simple solution for a seemingly common but often neglected problem, and should be valuable for improving the quality of mutagenesis libraries to enhance the efficiency of directed evolution strategies.


Assuntos
Evolução Molecular Direcionada/métodos , Biblioteca Gênica , Escherichia coli/genética , Plasmídeos/genética , Transformação Bacteriana/genética
20.
Microb Cell Fact ; 16(1): 187, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096626

RESUMO

BACKGROUND: Malonyl-coenzyme A (CoA) is an important biosynthetic precursor in vivo. Although Escherichia coli is a useful organism for biosynthetic applications, its malonyl-CoA level is too low. RESULTS: To identify strains with the best potential for enhanced malonyl-CoA production, we developed a whole-cell biosensor for rapidly reporting intracellular malonyl-CoA concentrations. The biosensor was successfully applied as a high-throughput screening tool for identifying targets at a genome-wide scale that could be critical for improving the malonyl-CoA biosynthesis in vivo. The mutant strains selected synthesized significantly higher titers of the type III polyketide triacetic acid lactone (TAL), phloroglucinol, and free fatty acids compared to the wild-type strain, using malonyl-CoA as a precursor. CONCLUSION: These results validated this novel whole-cell biosensor as a rapid and sensitive malonyl-CoA high-throughput screening tool. Further analysis of the mutant strains showed that the iron ion concentration is closely related to the intracellular malonyl-CoA biosynthesis.


Assuntos
Técnicas Biossensoriais/métodos , Malonil Coenzima A/análise , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Ensaios de Triagem em Larga Escala , Malonil Coenzima A/metabolismo , Floroglucinol/análise , Floroglucinol/metabolismo , Pironas/análise , Pironas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA