Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Talanta ; 270: 125538, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086223

RESUMO

A combination of SiO2@AuNPs@PDA molecularly imprinted and surface-assisted laser desorption/ionization-time-of-flight mass spectrometry (SALDI-TOF MS) was devised as a method for highly specific and ultrasensitive detection of two biogenic amines-histamine (HIS) and tryptamine (TRP)-in real samples. In this strategy, AuNPs modified amino-abundant silica nanospheres (SiO2@AuNPs). The prepared SiO2@AuNPs were used as a substrate to synthesize a molecularly imprinted polymer (MIP) through in situ dopamine self-polymerization with HIS and TRP as the template molecules (SiO2@AuNP@PDA-MIP). The as-prepared MIP structure, properties, and target-analyte identification conditions were characterized and optimized and it was used as the matrix for MS. Compared to the case of nonimprinted materials, the imprinting function endowed the matrix with a higher selectivity for capturing the target molecules. The enriched analytes were directly and rapidly identified using SALDI-TOF MS without elution. Meanwhile, the proposed method has low background interference, good reproducibility and stability, high salt tolerance, and satisfactory linearity (R2 > 0.99), and it enables ultrasensitive detection of HIS and TRP (limits of detection for HIS and TRP were 0.2 and 0.1 ng mL-1, respectively). Moreover, the proposed method was applied to analyze samples of real beer, sausage, and chicken, and the results agreed with those obtained via liquid chromatography-MS, suggesting that the method has excellent practical applications in the field of food safety.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Polímeros Molecularmente Impressos , Impressão Molecular/métodos , Histamina , Dióxido de Silício/química , Ouro/química , Reprodutibilidade dos Testes , Triptaminas
2.
Talanta ; 258: 124423, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898307

RESUMO

Herein, a novel surface molecularly imprinted-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (SMI-MALDI-TOF MS) method for direct target paraquat (PQ) analysis in complicated samples is reported. Notably, a captured analyte-imprinted material can be directly detected via MALDI-TOF MS by using imprinted material as nanomatrix. Using this strategy, the molecular specific affinity performance of surface molecularly imprinted polymers (SMIPs) and the high-sensitivity detection capability of MALDI-TOF MS was integrated. The introduction of SMI endowed the nanomatrix with the capacity for rebinding the target analyte and ensuring specificity, prevented the interfering organic matrix, and enhanced the analyzing sensitivity. By using paraquat (PQ) as a template, dopamine as a monomer, and covalent organic frameworks with a carboxyl group (C-COFs) as a substrate, polydopamine (PDA) was decorated on C-COFs via a simple self-assembly procedure to generate an analyte-based surface molecularly imprinted polymer (C-COF@PDA-SMIP), which served the dual function of SMIP capturing the target analytes and high-efficiency ionization. Thus, a reliable MALDI-TOF MS detection PQ with high selectivity and sensitivity as well as an interference-free background was achieved. The synthesis and enrichment conditions of C-COF@PDA-SMIPs were optimized, and its structure and property were characterized. Under optimal experimental conditions, the proposed method achieved highly selective and ultrasensitive detection of PQ from 5 to 500 pg mL-1, and the limit of detection was as low as 0.8 pg mL-1, which is at least three orders of magnitude lower than that achieved without enrichment. In addition, the specificity of the proposed method was superior to that of C-COFs and nonimprinted polymers. Moreover, this method exhibited reproducibility, stability, and high salt tolerance. Lastly, the practical applicability of the method was successfully verified by analyzing complicated samples, such as grass and orange.


Assuntos
Impressão Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Paraquat/análise , Paraquat/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Impressão Molecular/métodos , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA