Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 3111, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082702

RESUMO

The lack of structural information impeded the access of efficient luminescence for the exciplex type thermally activated delayed fluorescence (TADF). We report here the pump-probe Step-Scan Fourier transform infrared spectra of exciplex composed of a carbazole-based electron donor (CN-Cz2) and 1,3,5-triazine-based electron acceptor (PO-T2T) codeposited as the solid film that gives intermolecular charge transfer (CT), TADF, and record-high exciplex type cyan organic light emitting diodes (external quantum efficiency: 16%). The transient infrared spectral assignment to the CT state is unambiguous due to its distinction from the local excited state of either the donor or the acceptor chromophore. Importantly, a broad absorption band centered at ~2060 cm-1 was observed and assigned to a polaron-pair absorption. Time-resolved kinetics lead us to conclude that CT excited states relax to a ground-state intermediate with a time constant of ~3 µs, followed by a structural relaxation to the original CN-Cz2:PO-T2T configuration within ~14 µs.

2.
ACS Appl Mater Interfaces ; 10(28): 24090-24098, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29943574

RESUMO

We report a new efficient exciplex-forming system consisting of a biscarbazole donor and a triazine-based acceptor. The new exciplex was characterized with a high photoluminescence quantum yield up to 68% and effective thermally activated delayed fluorescence behavior. The BCzPh:3P-T2T (2:1, 30 nm) blend was examined not only as an emitting layer (device D1) but also a reliable co-host of fluorescent and phosphorescent emitters for giving highly efficient exciplex-based organic light-emitting diodes (OLEDs) with a high maximum external quantum efficiency of 15.5 and 29.7% for devices doped with 1 wt % C545T (device D2) and 8 wt % Ir(ppy)2(acac) (device D4), respectively. More strikingly, a strongly enhanced lifetime ( T75 = 16 927 min.) of the C545T-doped device was obtained. The transient electroluminescence measurement as well as capacitance-voltage and impedance-voltage correlations were utilized to explore the factors governing the high efficiency and stability. The obtained results clearly show that the energy transfer and charge transport is highly efficient; they also show the photoelectric semiconducting characteristics of exciplex-based OLEDs, which are significantly different from those of unipolar host-based reference devices D3 (Alq3: 1 wt % C545T) and D5 (CBP: 8 wt % Ir(ppy)2(acac)). Our works have established a systematic protocol to shed light on the mechanisms behind exciplex-based devices. The combined results also confirm the bright prospect of the exciplex-forming system as the co-host for highly efficient and stable OLEDs.

3.
ACS Appl Mater Interfaces ; 8(7): 4811-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26820247

RESUMO

A star-shaped 1,3,5-triazine/cyano hybrid molecule CN-T2T was designed and synthesized as a new electron acceptor for efficient exciplex-based OLED emitter by mixing with a suitable electron donor (Tris-PCz). The CN-T2T/Tris-PCz exciplex emission shows a high ΦPL of 0.53 and a small ΔET-S = -0.59 kcal/mol, affording intrinsically efficient fluorescence and highly efficient exciton up-conversion. The large energy level offsets between Tris-PCz and CN-T2T and the balanced hole and electron mobility of Tris-PCz and CN-T2T, respectively, ensuring sufficient carrier density accumulated in the interface for efficient generation of exciplex excitons. Employing a facile device structure composed as ITO/4% ReO3:Tris-PCz (60 nm)/Tris-PCz (15 nm)/Tris-PCz:CN-T2T(1:1) (25 nm)/CN-T2T (50 nm)/Liq (0.5 nm)/Al (100 nm), in which the electron-hole capture is efficient without additional carrier injection barrier from donor (or acceptor) molecule and carriers mobilities are balanced in the emitting layer, leads to a highly efficient green exciplex OLED with external quantum efficiency (EQE) of 11.9%. The obtained EQE is 18% higher than that of a comparison device using an exciplex exhibiting a comparable ΦPL (0.50), in which TCTA shows similar energy levels but higher hole mobility as compared with Tris-PCz. Our results clearly indicate the significance of mobility balance in governing the efficiency of exciplex-based OLED. Exploiting the Tris-PCz:CN-T2T exciplex as the host, we further demonstrated highly efficient yellow and red fluorescent OLEDs by doping 1 wt % Rubrene and DCJTB as emitter, achieving high EQE of 6.9 and 9.7%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA