Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1219690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670950

RESUMO

Tyrosine-protein phosphatase non-receptor type 2(PTPN2), an important member of the protein tyrosine phosphatase family, can regulate various signaling pathways and biological processes by dephosphorylating receptor protein tyrosine kinases. Accumulating evidence has demonstrated that PTPN2 is involved in the occurrence and development of atherosclerotic cardiovascular disease. Recently, it has been reported that PTPN2 exerts an anti-atherosclerotic effect by regulating vascular endothelial injury, monocyte proliferation and migration, macrophage polarization, T cell polarization, autophagy, pyroptosis, and insulin resistance. In this review, we summarize the latest findings on the role of PTPN2 in the pathogenesis of atherosclerosis to provide a rationale for better future research and therapeutic interventions.

3.
Cytokine ; 122: 154385, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-29703573

RESUMO

OBJECTIVE: Previous studies suggest that IL-8 has an important role in the regulation of cholesterol efflux, but whether miRNAs are involved in this process is still unknown. The purpose of this study is to explore whether IL-8 promotes cholesterol accumulation by enhancing miR-183 expression in macrophages and its underlying mechanism. METHODS AND RESULTS: Treatment of THP-1 macrophage-derived foam cells with IL-8 decreased ABCA1 expression and cholesterol efflux. Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-183 was highly conserved during evolution and directly inhibited ABCA1 protein and mRNA expression by targeting ABCA1 3'UTR. MiR-183 directly regulated endogenous ABCA1 expression levels. Furthermore, IL-8 enhanced the expression of miR-183 and decrease ABCA1 expression. Cholesterol transport assays confirmed that IL-8 dramatically inhibited apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux by increasing miR-183 expression. In contrast, treatment with anti-IL-8 antibody reversed these effects. CONCLUSION: IL-8 enhances the expression of miR-183, which then inhibits ABCA1 expression and cholesterol efflux. Our studies suggest that the IL-8-miR-183-ABCA1 axis may play an intermediary role in the development of atherosclerosis.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/biossíntese , Colesterol/metabolismo , Células Espumosas/metabolismo , Regulação da Expressão Gênica , Interleucina-8/metabolismo , MicroRNAs/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Espumosas/patologia , Humanos , Células THP-1
4.
J Cardiovasc Pharmacol ; 72(1): 60-67, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29738371

RESUMO

OBJECTIVE: The aim of this study was to determine whether the apolipoprotein A-1 (apoA-1) mimetic peptide ELK-2A2K2E regulates inflammatory cytokine expression through activating the adenosine triphosphate-binding cassette transporter A1 (ABCA1)-janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3)-tristetraprolin (TTP) signaling pathway in THP-1 macrophage-derived foam cells. METHODS AND RESULTS: The cells were treated with the apoA-1 mimetic peptide ELK-2A2K2E at different concentrations (0, 20, 40, and 80 µg/mL) or incubated with ELK-2A2K2E (40 µg/mL) for different times (0, 6, 12, and 24 hours). Our results showed that the levels of the cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1), were decreased at both concentration- and time-dependent manners. When the cells were exposed to lipopolysaccharides and actinomycin D, ELK-2A2K2E significantly decreased the mRNA stability of inflammatory cytokines at different time points (0, 30, 60, and 120 minutes) by increasing TTP expression as analyzed by real-time quantitative polymerase chain reaction. The effect of ELK-2A2K2E on TTP was obviously blocked by the inhibition of the JAK-STAT3 pathway. Furthermore, we found that ELK-2A2K2E activated the JAK-STAT3-TTP pathway through the upregulation of ABCA1 and then decreased inflammatory cytokine expression. CONCLUSIONS: ApoA-I mimetic peptide ELK-2A2K2E increases the degradation of TNF-α, IL-6, and MCP-1 mRNA and reduces the levels of inflammatory cytokines through activating the JAK2-STAT3-TTP signaling pathway that is dependent on the upregulation of ABCA1.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Anti-Inflamatórios/farmacologia , Apolipoproteína A-I/farmacologia , Citocinas/metabolismo , Células Espumosas/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Janus Quinase 2/metabolismo , Oligopeptídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Tristetraprolina/metabolismo , Citocinas/genética , Relação Dose-Resposta a Droga , Regulação para Baixo , Células Espumosas/metabolismo , Humanos , Mimetismo Molecular , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Fatores de Tempo
5.
Circ J ; 82(5): 1396-1404, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29618705

RESUMO

BACKGROUND: It has previously been demonstrated that apolipoprotein A-1 (apoA-1) binding protein (AIBP) promotes apoA-1 binding to ATP-binding cassette transporter A1 (ABCA1) and prevents ABCA1 protein degradation so as to inhibit foam cell formation. Because apoA-1 inhibits inflammatory signaling pathways, whether AIBP has an inhibitory effect on inflammatory signaling pathways in THP-1-derived macrophages is investigated.Methods and Results:Analysis of inflammation-related gene expression indicated that AIBP decreased lipopolysaccharide (LPS)-mediated macrophage inflammation. AIBP significantly prevented NF-κB nuclear translocation. Further, AIBP prevented the activation of mitogen-activated protein kinases (MAPKs), including p38 MAPK, extracellular-signal regulated kinase and c-Jun N-terminal kinase. AIBP decreased MyD88 expression at both mRNA and protein levels, but did not have any effect on TLR4 expression. Moreover, treatment with both AIBP and apoA-1 decreased the abundance of TLR4 in the lipid raft fraction. AIBP lacking 115-123 amino acids (∆115-123), however, did not have such effects as described for intact AIBP. In addition, knockdown of ABCA1 inhibited the effects of AIBP on inflammatory factor secretion. CONCLUSIONS: These results suggest that AIBP inhibits inflammatory signaling pathways through binding to apoA-1 and stabilizing ABCA1, and subsequent alteration of lipid rafts and TLR4 in the cell membrane.


Assuntos
Apolipoproteína A-I/metabolismo , Proteínas de Transporte/metabolismo , Células Espumosas/metabolismo , Sistema de Sinalização das MAP Quinases , Microdomínios da Membrana/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Proteínas de Ligação a DNA , Células Espumosas/patologia , Células HEK293 , Humanos , Inflamação/metabolismo , Inflamação/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Microdomínios da Membrana/patologia , Células THP-1 , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
6.
Atherosclerosis ; 273: 122-130, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29555084

RESUMO

BACKGROUND AND AIMS: ApoA-1 binding protein (AIBP) is a secreted protein that interacts with apoA-I and accelerates cholesterol efflux from cells. We have recently reported that AIBP promotes apoA-1 binding to ABCA1 in the macrophage cell membrane, partially through 115-123 amino acids. However, the effects of AIBP on the development of atherosclerosis in vivo remain unknown. METHODS: ApoE-/- mice with established atherosclerotic plaques were infected with rAAV-AIBP or rAAV-AIBP(Δ115-123), respectively. RESULTS: AIBP-treated mice showed reduction of atherosclerotic lesion formation, increase in circulating HDL levels and enhancement of reverse cholesterol transport to the plasma, liver, and feces. AIBP increased ABCA1 protein levels in aorta and peritoneal macrophages. Furthermore, AIBP could diminish atherosclerotic plaque macrophage content and the expression of chemotaxis-related factors. In addition, AIBP prevented macrophage inflammation by inactivating NF-κB and promoted the expression of M2 markers like Mrc-1 and Arg-1. However, lack of 115-123 amino acids of AIBP(Δ115-123) had no such preventive effects on the progression of atherosclerosis. CONCLUSIONS: Our observations demonstrate that AIBP inhibits atherosclerosis progression and suggest that it may be an effective target for prevention of atherosclerosis.


Assuntos
Apolipoproteínas E/fisiologia , Aterosclerose/prevenção & controle , Colesterol/metabolismo , Proteínas de Ligação a DNA/uso terapêutico , Inflamação/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Transporte Biológico/efeitos dos fármacos , Proteínas de Ligação a DNA/farmacologia , Proteínas de Ligação a DNA/fisiologia , Masculino , Camundongos
7.
Eur J Pharmacol ; 811: 74-86, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576406

RESUMO

It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Isoflavonas/farmacologia , Macrófagos/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA