Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Int J Biol Macromol ; 269(Pt 2): 132058, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704065

RESUMO

In clinical practice, tumor-targeting diagnosis and immunotherapy against programmed death ligand 1 (PD-L1) have a significant impact. In this research, a PD-L1-antagonistic affibody dimer (ZPD-L1) was successfully prepared through Escherichia coli expression system, and conjugated with the photosensitizer of ICG via N-hydroxysuccinimide (NHS) ester to develop a novel tumor-targeting agent (ICG-ZPD-L1) for both tumor imaging diagnosis and photothermal-immunotherapy simultaneously. In vitro, ZPD-L1 could specifically bind to PD-L1-positive LLC and MC38 tumor cells, and ICG-ZPD-L1-mediated photothermal therapy (PTT) also showed excellent phototoxicity to these tumor cells. In vivo, ICG-ZPD-L1 selectively enriched into the PD-L1-positive MC38 tumor tissues, and the high-contrast optical imaging of tumors was obtained. ICG-ZPD-L1-mediated PTT exhibited a potent anti-tumor effect in vivo due to its remarkable photothermal properties. Furthermore, ICG-ZPD-L1-mediated PTT significantly induced the immunogenic cell death (ICD) of primary tumors, promoted maturation of dendritic cells (DCs), up-regulated anti-tumor immune response, enhanced immunotherapy, and superiorly inhibited the growth of metastatic tumors. In addition, ICG-ZPD-L1 showed favorable biosafety throughout the brief duration of treatment. In summary, these results suggest that ICG-ZPD-L1 is a multifunctional tumor-targeting drug integrating tumor imaging diagnosis and photothermal-immunotherapy, and has great guiding significance for the diagnosis and treatment of clinical PD-L1-positive tumor patients.

2.
Chemistry ; : e202400945, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690799

RESUMO

The performance of lithium-sulfur batteries is compromised by the loss of sulfur as dissolved polysulfides in the electrolyte and consequently the polysulfide redox shutting effect. Accelerating the conversion kinetics of polysulfide intermediates into sulfur or lithium sulfide through electrocatalysis has emerged as a root-cause solution. Co-N-C composite electrocatalyst is commonly used for this purpose. It is illustrated here that how the effectiveness can be improved by modulating the coordination chemistry of Co-N-C catalytic sites through introducing Ru species (RuCo-NC). The well-dispersed Ru in the Co-NC carbon matrix altered the total charge distribution over the Co-N-C catalytic sites and led to the formation of electron-rich Co-N, which is highly active for the polysulfide conversion reactions. Using Ru to modulate the electronic structure in the Co-N-C configuration and the additional catalytic sites over the Ru-Nx species can manifest optimal adsorption behavior of polysulfides. Consequently, the sulfur cathode with RuCo-NC can reduce the capacity fade rate from 0.11% per cycle without catalyst (initial capacity of 701 mAh g-1) to 0.054% per cycle (initial capacity of 1074 mAh g-1) over 400 cycles at 0.2 C rate. The results of this study provide the evidence for a feasible catalyst modification strategy for the polysulfide electrocatalysis.

3.
ChemMedChem ; : e202400189, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632104

RESUMO

The development of bioelectronic devices is heading toward high throughput and high resolution. Yet, most electrode materials utilized in electrical biosensing are not compatible with the manufacturing techniques of semiconductor chips, which somehow hinders the integration and miniaturization of these devices. Titanium nitride (TiN) is a durable and economical material that is widely used in CMOS-based integrated circuits, bioelectronic systems, electrocatalytic systems, etc. Considering different application scenarios, new and efficient methods are required to functionalize TiN surface. In this study, a surface functionalization approach by covalent grafting of an organic thin film containing hydroxyl groups on TiN surface via electroreduction of diazonium salt 4-(2-hydroxyethyl)benzenediazonium was presented. Cyclic voltammetry (CV) procedures were carried out at the potential ranges of -0.8 V~0.5 V (vs Ag/AgCl) with varying numbers of potential cycles (i. e., 5, 25, and 50 cycles) in order to study the thickness of modification layer. Then, the electrochemical property, surface morphology, and chemical structures of the sample before and after modifications were investigated via multiple characterization techniques, such as CV, atomic force microscopy (AFM), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), etc., thereby confirming the successful grafting of hydroxyl groups onto the TiN surface. The experiments on DNA synthesis aimed to explore the potential of modified TiN electrode as a novel platform for DNA data storage applications and the corresponding proof-of-principle was accomplished by the process of coupling Cy3-phosphoramidite. Finally, the experiments were successfully reproduced on the randomly selected sites of the modified TiN microarray chips demonstrating the potential of technical protocol to extend applications in future bioelectronic devices, such as bio-sensing, high-throughput DNA synthesis, and molecular manipulation.

4.
Chem Soc Rev ; 53(9): 4463-4489, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38498347

RESUMO

With the explosion of digital world, the dramatically increasing data volume is expected to reach 175 ZB (1 ZB = 1012 GB) in 2025. Storing such huge global data would consume tons of resources. Fortunately, it has been found that the deoxyribonucleic acid (DNA) molecule is the most compact and durable information storage medium in the world so far. Its high coding density and long-term preservation properties make itself one of the best data storage carriers for the future. High-throughput DNA synthesis is a key technology for "DNA data storage", which encodes binary data stream (0/1) into quaternary long DNA sequences consisting of four bases (A/G/C/T). In this review, the workflow of DNA data storage and the basic methods of artificial DNA synthesis technology are outlined first. Then, the technical characteristics of different synthesis methods and the state-of-the-art of representative commercial companies, with a primary focus on silicon chip microarray-based synthesis and novel enzymatic DNA synthesis are presented. Finally, the recent status of DNA storage and new opportunities for future development in the field of high-throughput, large-scale DNA synthesis technology are summarized.


Assuntos
DNA , DNA/química , Armazenamento e Recuperação da Informação , Análise de Sequência com Séries de Oligonucleotídeos
5.
Mol Pharm ; 21(3): 1222-1232, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364870

RESUMO

The morbidity and mortality of lung cancer are still the highest among all malignant tumors. Radiotherapy plays an important role in clinical treatment of lung cancer. However, the effect of radiotherapy is not ideal due to the radiation resistance of tumor tissues. Abnormalities in tumor vascular structure and function affect blood perfusion, and oxygen transport is impeded, making tumor microenvironment hypoxic. Tumor hypoxia is the major cause of radiotherapy resistance. By promoting tumor vessel normalization and enhancing vascular transport function, tumor hypoxia can be relieved to reduce radiotherapy resistance and increase tumor radiotherapy sensitivity. In our previous study, a pericytes-targeted tumor necrosis factor alpha (named Z-TNFα) was first constructed and produced by genetically fusing the platelet-derived growth factor receptor ß (PDGFRß)-antagonistic affibody (ZPDGFRß) to the TNFα, and the Z-TNFα induced normalization of tumor vessels and improved the delivery of doxorubicin, enhancing tumor chemotherapy. In this study, the tumor vessel normalization effect of Z-TNFα in lung cancer was further clarified. Moreover, the tumor hypoxia improvement and radiosensitizing effect of Z-TNFα were emphatically explored in vivo. Inspiringly, Z-TNFα specifically accumulated in Lewis lung carcinoma (LLC) tumor graft and relieved tumor hypoxia as well as inhibited HIF-1α expression. As expected, Z-TNFα significantly increased the effect of radiotherapy in mice bearing LLC tumor graft. In conclusion, these results demonstrated that Z-TNFα is also a promising radiosensitizer for lung cancer radiotherapy.


Assuntos
Neoplasias Pulmonares , Radiossensibilizantes , Animais , Camundongos , Neoplasias Pulmonares/radioterapia , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Doxorrubicina , Microambiente Tumoral
6.
Cancer Sci ; 115(4): 1209-1223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288904

RESUMO

Abnormal activation of the oncogene YAP in the Hippo pathway is a major feature in liver cancer and inactivation of MST1/2 has been shown to be responsible for the overactivation of YAP that led to tumorigenesis. However, mechanisms underlying MST1/2 dysregulation remain poorly understood. RNA-seq analysis and genome (KEGG) pathway enrichment analysis were used to identify genes and pathways that were regulated by SIRT7. qRT-PCR, ChIP, and luciferase assay were used to investigate transcriptional regulation. Mass spectrometry, co-immunoprecipitation and immunoprecipitation were used to exam protein-protein interaction and post-transcriptional modification. A xenograft mouse model was used to confirm the effect of SIRT7 and SIRT7 inhibitors on hepatocellular carcinoma (HCC) proliferation in vivo. We found that SIRT7 suppresses MST1 by both transcriptional regulation and post-transcriptional modification, which in turn promotes YAP nuclear localization and transcriptional activation in liver cancer. Mechanistically, we revealed that SIRT7 suppresses MST1 transcription by binding to the MST1 promoter and inducing H3K18 deacetylation in its promoter region. In addition, SIRT7 directly binds to and deacetylates MST1, which primes acetylation-dependent MST1 ubiquitination and protein degradation. In clinical samples, we confirmed a negative correlation between SIRT7 and MST1 protein levels, and high SIRT7 expression correlated with elevated YAP expression and nuclear localization. In addition, SIRT7 specific inhibitor 2800Z sufficiently inhibited HCC growth by disrupting the SIRT7/MST1/YAP axis. Our data thus revealed the previously undescribed function of SIRT7 in regulating the Hippo pathway in HCC and further proved that targeting SIRT7 might provide novel therapeutic options for the treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuínas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proliferação de Células/genética , Sirtuínas/genética , Sirtuínas/metabolismo
7.
Heliyon ; 10(1): e23533, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173486

RESUMO

This study was conducted to observe the effect of Chinese herbal compound on the treatment of colon cancer using AOM/DSS-induced C57BL/6J colon cancer mice and to validate potential influence on intestinal flora of mice. A colorectal cancer (CRC) mouse model was built with a total of 50 C57BL/6J mice that were induced by administrating AOM/DSS. These experimental animals were split up into 5 groups, a control group, a model group, and low-, medium- and high-dose Chinese herbal compound groups. All mice were given Chinese herbal compound treatment, and the colon tissues of each group were harvested with the length measured and the number of colon polyps accounted. The Ki-67 expression in the colon tissues was detected via immuno-histochemistry. Relative quantification of the expression of genes and proteins was determined through qPCR and WB assays. Contents of IL-6, TNF-α, IFN-γ, and IL-10 in serum and colon tissues of mice were determined by ELISA. An additional 16S rRNA sequencing analysis was implemented for the identification of mouse intestinal flora. The results suggested that all low-, medium- or high-dose Chinese herbal compound could markedly inhibit the shortening of colon length and significant number reduction of colon polyps in the model group. The relative expression of genes and proteins (PCNA, Muc16, and MMP-9) associated with proliferation in mouse colon tissues were inhibited. In addition, compared with the model group, the contents of IL-6, TNF-α, and IFN-γ in serum and colon tissues were substantially decreased in the high-dose Chinese herbal compound group, thereby reducing the structure damage in colon tissues and the infiltration degree of inflammatory cells. Besides, the expression of TLR4/MyD88/NF-κB protein was markedly decreased. The 16S rRNA sequencing analysis demonstrated that mice in the model group had decreased intestinal flora diversity, and there were significant changes in flora abundance and amino acid metabolism between the control group and the model group. Taken together, the treatment of Chinese herbal compound against CRC in this study might be regulated by the TLR4/MyD88/NF-κB signaling pathway, and the imbalance in intestinal flora was also closely related to CRC occurrence.

8.
Transl Cancer Res ; 12(9): 2319-2335, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37859733

RESUMO

Background: As a member of m6A methylated binding protein, RNA binding motif protein X-linked (RBMX) has been reported to be associated with tumor invasion, metastasis and prognosis. However, the prognostic significance of RBMX expression in esophageal cancer (ESCA) remains unclear. Methods: Based on the TIMER database, GEPIA database, cBioPortal database, CIBERSORT deconvolution algorithm, String-DB database, LinkedOmics database, etc., the RBMX expression level, mRNA expression level, prognostic relationship, genetic mutation, immune cell infiltration level, protein interaction network, differential co-expression genes and functional enrichment in esophageal carcinoma were analyzed. Immunohistochemistry was used to detect the expression of RBMX in 53 cases of esophageal carcinoma and adjacent esophageal tissues. Results: The RBMX expression in ESCA tissue was significantly higher than that in the normal tissues. The overall survival (OS) of patients with high RBMX expression was significantly lower than that of patients with low expression (P=0.04). The protein encoded by the RBMX gene appeared to copy number amplification, mutation and deep deletion. The expression level of RBMX was positively correlated with the levels of follicular helper T cells, eosinophils and initial B cells (P<0.05). Genes significantly and positively correlated with RBMX expression included HNRNPA1L2, SFRS13A, HNRNPA1, etc., which were mainly enriched in biological processes (BPs) such as cell division, mRNA splicing, RNA binding and mRNA 3'-UTR binding. Conclusions: RBMX may be as a biomarker of poor prognosis of ESCA. RBMX is closely related to the survival and prognosis, genetic mutation and immune cell infiltration of patients with ESCA.

9.
Medicine (Baltimore) ; 102(36): e35101, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682161

RESUMO

Semen Strychni (SS), known as an agonist of central nervous system, is a traditional herb widely used in treating amyotrophic lateral sclerosis (ALS) in small doses to relieve muscle weakness and improve muscle strength. However, the potential mechanisms and the main components of SS in treating ALS remain unclear. To explore the underlying mechanism of SS in treating ALS based on network pharmacology and molecular docking. The active components of SS were obtained using TCMSP, Herb, ETCM, and BATMAN-TCM. The targets of SS were gained from PharmMapper. The targets of ALS were searched on Genecards, Drugbank, DisGeNET, OMIM, TTD and GEO database. After obtaining the coincidence targets, we submitted them to the STRING database to build a protein-protein interaction network. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed subsequently. The active components and targets were further investigated using molecular docking technology. 395 targets of SS and 1925 targets of ALS were obtained with 125 common targets. The protein-protein interaction analysis indicated that SRC, AKT1, MAPK1, EGFR, and HSP90AA1 received the higher degree value and were considered the central genes. The Ras, PI3K-Akt, and MAPK signaling pathway could be involved in the treatment of ALS. Brucine-N-oxide obtained the lowest binding energy in molecular docking. This study explored the mechanism of SS in the treatment of ALS and provides a new perspective for future study. However, further experimental studies are needed to validate the therapeutic effect.


Assuntos
Esclerose Lateral Amiotrófica , Sêmen , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases
10.
J Hazard Mater ; 459: 131830, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37506643

RESUMO

The nitrobenzene (NB) reduction and denitrification performance of the immobilized biofilm (I-BF) reactors based on 9,10-anthraquinone-2-sulfonyl chloride (ASC) modified polyurethane foam (PUF-ASC) carriers were investigated. Experiments demonstrated that the quinone mediators enhanced NB reduction and denitrification performance. The NB reduction rates increased by 1.46, while the NO3--N removal rates increased by 1.55 times in the PUF-0.1ASC system. The quinone mediators promote extracellular polymeric substances (EPS) secretion. Electrochemical tests indicated that quinone mediators enhanced the electron transfer of biofilm systems. NADH generation was accelerated and microbial electron transport system activity (ETSA) was promoted. The abundance of genera with electrochemical activity, NB degradation and denitrification ability (Pseudomonas sp., Diaphorobate sp., and Acinetobacter sp.) increased. Metabolic pathways relating to NO3--N and NB reduction were uploaded. In conclusion, electron acquisition by NO3--N and NB was facilitated, bacterial community structure and metabolic pathways were affected by the quinone mediators.


Assuntos
Benzoquinonas , Desnitrificação , Nitrobenzenos/química , Nitrogênio , Reatores Biológicos
11.
Chin Herb Med ; 15(2): 291-297, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37265765

RESUMO

Objective: Flavonoids are the bioactive compounds in safflower (Carthamus tinctorius), in which chalcone synthase (CHS) is the first limiting enzyme. However, it is unclear that which chalcone synthase genes (CHSs) are participated in flavonoids biosynthesis in C. tinctorius. In this study, the CHSs in the molecular characterization and enzyme activities were investigated. Methods: Putative chalcone biosynthase genes were screened by the full-length transcriptome sequences data in C. tinctorius. Chalcone biosynthase genes in C. tinctorius (CtCHSs) were cloned from cDNA of flowers of C. tinctorius. The cloned gene sequences were analyzed by bioinformatics, and their expression patterns were analyzed by real-time PCR (RT-PCR). The protein of CtCHS in the development of flowers was detected by polyclonal antibody Western blot. A recombinant vector of CtCHS was constructed. The CtCHS recombinant protein was induced and purified to detect the enzyme reaction (catalyzing the reaction of p-coumaryl-CoA and malonyl-CoA to produce naringin chalcone). The reaction product was detected by HPLC and LC-MS. Results: Two full-length CtCHS genes were successfully cloned from the flowers of safflower (CtCHS1 and CtCHS3), with gene lengths of 1525 bp and 1358 bp, respectively. RT-PCR analysis showed that both genes were highly expressed in the flowers, but the expression of CtCHS1 was higher than that of CtCHS3 at each developmental stage of the flowers. WB analysis showed that only CtCHS1 protein could be detected at each developmental stage of the flowers. HPLC and LC-MS analyses showed that CtCHS1 could catalyze the conversion of p-coumaryl-CoA and malonyl-CoA substrates to naringin chalcone. Conclusion: CtCHS1 is involved in the biosynthesis of naringin chalcone in safflower.

12.
Medicine (Baltimore) ; 102(9): e32985, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862911

RESUMO

This study intended to assess the urinary retention between nerve-sparing radical hysterectomy and radical hysterectomy in cervical cancer. Relevant studies were selected from databases of PubMed, Embase, Wanfang, and China National Knowledge Internet with the last report up to January 15, 2022. Hazard ratio (HR) and 95% confidence interval (CI) were chosen as the evaluation index. Heterogeneity was assessed using Cochran Q test and I2 test. Subgroup analysis was conducted based on areas and cancer types (primary and metastatic cancer). A total of 8 articles (retrospective cohort studies) were selected in the meta-analysis. There were significant correlations between nerve-sparing radical hysterectomy and radical hysterectomy in related with urinary retention (HR [95% CI] = 1.78 [1.37, 2.31], P < .001) and (HR [95% CI] = 2.49 [1.43, 4.33], P = .001) of cervical cancer patients. Egger test revealed a significant publication bias (P = .014). Sensitivity analysis via omitting 1 study at each time showed that omission of any study made significant difference (P < .05), indicating reliability and good stability for the analysis. Additionally, there were significant heterogeneities in most subgroups.


Assuntos
Retenção Urinária , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/cirurgia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Histerectomia
13.
J Neuroinflammation ; 20(1): 69, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906561

RESUMO

BACKGROUND: Microglial activation-mediated neuroinflammation is one of the essential pathogenic mechanisms of sepsis-associated encephalopathy (SAE). Mounting evidence suggests that high mobility group box-1 protein (HMGB1) plays a pivotal role in neuroinflammation and SAE, yet the mechanism by which HMGB1 induces cognitive impairment in SAE remains unclear. Therefore, this study aimed to investigate the mechanism of HMGB1 underlying cognitive impairment in SAE. METHODS: An SAE model was established by cecal ligation and puncture (CLP); animals in the sham group underwent cecum exposure alone without ligation and perforation. Mice in the inflachromene (ICM) group were continuously injected with ICM intraperitoneally at a daily dose of 10 mg/kg for 9 days starting 1 h before the CLP operation. The open field, novel object recognition, and Y maze tests were performed on days 14-18 after surgery to assess locomotor activity and cognitive function. HMGB1 secretion, the state of microglia, and neuronal activity were measured by immunofluorescence. Golgi staining was performed to detect changes in neuronal morphology and dendritic spine density. In vitro electrophysiology was performed to detect changes in long-term potentiation (LTP) in the CA1 of the hippocampus. In vivo electrophysiology was performed to detect the changes in neural oscillation of the hippocampus. RESULTS: CLP-induced cognitive impairment was accompanied by increased HMGB1 secretion and microglial activation. The phagocytic capacity of microglia was enhanced, resulting in aberrant pruning of excitatory synapses in the hippocampus. The loss of excitatory synapses reduced neuronal activity, impaired LTP, and decreased theta oscillation in the hippocampus. Inhibiting HMGB1 secretion by ICM treatment reversed these changes. CONCLUSIONS: HMGB1 induces microglial activation, aberrant synaptic pruning, and neuron dysfunction in an animal model of SAE, leading to cognitive impairment. These results suggest that HMGB1 might be a target for SAE treatment.


Assuntos
Disfunção Cognitiva , Proteína HMGB1 , Encefalopatia Associada a Sepse , Sepse , Animais , Camundongos , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Proteína HMGB1/metabolismo , Doenças Neuroinflamatórias , Sepse/complicações , Encefalopatia Associada a Sepse/metabolismo
14.
Eur J Pharm Sci ; 183: 106388, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758771

RESUMO

AIMS: To prepare hyaluronic acid-loaded Harmine polymeric micelles with CD44 targeting properties and to investigate their anti-breast cancer effects in vitro. METHODS: The carboxyl group on hyaluronic acid is coupled to the amino group on 3,5-bis(trifluoromethyl)benzylamine by an amidation reaction. And the polymeric micelles self-assemble to encapsulate the Harmine in a hydrophobic core, characterized the polymer micelles by IR, 19F-NMR, Malvern particle sizing, release, hemolysis, and other experiments. Used CD44-positive MDA-MB-231 cells and CD44-negative MCF-7 cells as tumor models. The effect of polymer micelles on breast cancer cells in vitro by cytotoxicity assay, confocal, and flow cytometry. RESULTS: The prepared polymer micelles had a uniform particle size of about 200 nm, good dispersion, PDI < 0.3, encapsulation rate up to 87%, drug loading of 4.12±0.03%, and negative charge. Hyaluronidase has a good enzymatic effect on polymeric micelles, with a hemolysis rate of less than 1%. It showed some dose-dependent toxicity to both MDA-MB-231 and MCF-7, with increased uptake of polymer micelles by CD44-positive MDA-MB-231 compared to CD44-negative MCF-7 cells and significant effects of polymer micelles on apoptosis and cycling in both cell types. These results suggest that the hyaluronic acid-loaded Harmine polymer micelles designed in this study are effective in killing breast cancer cells while at the same time reducing the toxicity of Harmine and improving its slow-release targeting.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Micelas , Ácido Hialurônico/química , Harmina , Hemólise , Polímeros/química , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
15.
Medicine (Baltimore) ; 102(8): e33039, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36827052

RESUMO

BACKGROUND: Severe pain has been linked to depression, which raises the question of whether neuraxial analgesia during childbirth is associated with a reduced risk of postpartum depression. This association has been explored, but previous studies did not control or analyze relevant confounders. We conducted a systematic review and meta-analysis to determine the association between neuraxial analgesia and postpartum depression. METHODS: A systematic review was conducted using PubMed, Embase, and the Cochrane Central Register of Controlled Trials. Studies that tested the effect of neuraxial analgesia during labor on depression or depressive symptoms in the first year postpartum were included. Relevant articles were extracted independently by 2 authors. RESULTS: In total, 14 studies (86,231 women) were included. The association between neuraxial analgesia and the long-term incidence of postpartum depression after childbirth was the risk ratio = 0.75, 95% confidence interval (CI): 0.56-1.00, P = .05; I2 = 79%, P < .00001. There was a significant association (pooled risk ratio = 0.55, 95% CI: 0.34-0.90, P = .02; I2 = 55%, P = .06) between neuraxial analgesia and the incidence of postpartum depression in the first week after delivery. The subgroup analysis showed a trend suggesting that in Asian populations, those who received neuraxial analgesia had lower postpartum depression rates than those who received non-neuraxial analgesia (risk ratio = 0.57, 95% CI: 0.38-0.86; P = .008; I2 = 82%) at ≥4 weeks after delivery. CONCLUSION: Neuraxial analgesia may be beneficial for the short-term and long-term mental effects of parturient women, especially for short term after delivery. High-quality studies addressing the role of neuraxial analgesia during labor and its impact on postpartum depression remain necessary.


Assuntos
Analgesia Epidural , Analgesia Obstétrica , Analgesia , Depressão Pós-Parto , Trabalho de Parto , Gravidez , Feminino , Humanos , Manejo da Dor , Dor
16.
Appl Opt ; 62(6): 1557-1566, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821317

RESUMO

A method of optical fiber composite overhead ground wire (OPGW) positioning based on a Brillouin distributed optical fiber sensor and machine learning is proposed. A distributed Brillouin optical time-domain reflectometry (BOTDR) and Brillouin optical time-domain analyzer (BOTDA) are designed, where the ranges of BOTDR and the BOTDA are 110 km and 125 km, respectively. An unsupervised machine learning method density-based spatial clustering of applications with noise (DBSCAN) is proposed to automatically identify the splicing point based on the Brillouin frequency shift (BFS) difference of adjacent sections. An adaptive parameter selection method based on k-distance is adapted to overcome the parameter sensitivity. The validity of the proposed DBSCAN algorithm is greater than 96%, which is evaluated by three commonly external validation indices with five typical BFS curves. According to the clustering results of different fiber cores and the tower schedule of the OPGW, the connecting towers are distinguished, which is proved as a 100% recognition rate. According to the identification results of different fiber cores of both the OPGW cables and tower schedule, the connecting towers can be distinguished, and the distributed strain information is extracted directly from the BFS to strain. The abnormal region is positioned and warned according to the distributed strain measurements. The method proposed herein significantly improves the efficiency of fault positioning and early warning, which means a higher operational reliability of the OPGW cables.

17.
Neuropharmacology ; 225: 109383, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565851

RESUMO

Ketamine can produce rapid-acting antidepressant effects in treatment-resistant patients with depression. Although alterations in glutamatergic and GABAergic neurotransmission in the brain play a role in depression, the precise molecular mechanisms in these neurotransmission underlying ketamine's antidepressant actions remain largely unknown. Mice exposed to FSS (forced swimming stress) showed depression-like behavior and decreased levels of GABA (γ-aminobutyric acid), but not glutamate, in the hippocampus. Ketamine increased GABA levels and decreased glutamate levels in the hippocampus of mice exposed to FSS. There was a correlation between GABA levels and depression-like behavior. Furthermore, ketamine increased the levels of enzymes and transporters on the GABAergic neurons (SAT1, GAD67, GAD65, VGAT and GAT1) and astrocytes (EAAT2 and GAT3), without affecting the levels of enzymes and transporters (SAT2, VGluT1 and GABAAR γ2) on glutamatergic neurons. Moreover, ketamine caused a decreased expression of GABAAR α1 subunit, which was specifically expressed on GABAergic neurons and astrocytes, an increased GABA synthesis and metabolism in GABAergic neurons, a plasticity change in astrocytes, and an increase in ATP (adenosine triphosphate) contents. Finally, GABAAR antagonist bicuculline or ATP exerted a rapid antidepressant-like effect whereas pretreatment with GABAAR agonist muscimol blocked the antidepressant-like effects of ketamine. In addition, pharmacological activation and inhibition of GABAAR modulated the synthesis and metabolism of GABA, and the plasticity of astrocytes in the hippocampus. The present data suggest that ketamine could increase GABA synthesis and astrocyte plasticity through downregulation of GABAAR α1, increases in GABA, and conversion of GABA into ATP, resulting in a rapid-acting antidepressant-like action. This article is part of the Special Issue on 'Ketamine and its Metabolites'.


Assuntos
Ketamina , Receptores de GABA-A , Camundongos , Animais , Receptores de GABA-A/metabolismo , Ketamina/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Hipocampo/metabolismo , Antagonistas GABAérgicos , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Depressão/tratamento farmacológico
18.
Nanomedicine ; 47: 102615, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265558

RESUMO

Cervical diseases such as lymph node disease and tubal obstruction have threatened women's health. However, the traditional diagnostic methods still have shortcomings. NIR-II fluorescence imaging with advantages of low scattering, negligible autofluorescence, and high spatial resolution could be an ideal option. To obtain high quality NIR-II fluorescence imaging, selecting appropriate nanoprobes becomes the important issue. As a small molecular photothermal agent, extensive applications of ICG are rather limited because of its drawbacks. Herein, natural silk fibroin (SF) was synthesized and encapsulated ICG molecules to form SF@ICG nanoparticles (NPs). After detailed analysis, SF@ICG NPs showed excellent stability and long circulation time, as well as strong NIR-II fluorescence emission, well photo-stability, biocompatibility and well photothermal property under 808 nm laser irradiation. Furthermore, SF@ICG NPs were utilized for NIR-II fluorescence imaging of lymph node/lymphangiography and angiography of fallopian tubes. The process of fallopian tubes could be detected with high resolution and high sensitivity.


Assuntos
Fibroínas , Verde de Indocianina , Feminino , Humanos , Imagem Óptica
19.
Macromol Rapid Commun ; 44(11): e2200678, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36069655

RESUMO

The development and understanding of proton conductors based on phosphoric acid are critical for the field of chemistry, biology, and energy. Covalent organic frameworks (COFs), featuring highly crystalline structures and controllable pore sizes, are suitable for constructing phosphoric acid-based proton conductors. However, because of tedious and intricate synthesis, how to develop COFs based on phosphoric acid remains a substantial challenge. Herein, a side-chain decorated strategy is contributed to construct a phosphoric acid-functionalized, imine-linked COF by de novo synthesis. The phosphoric acid side chains with vigorous motion integrating with 1D nanochannels endow the resulting COF with intrinsic proton conductivity. This work expectantly provides a competitive alternative for producing phosphoric acid-functionalized COFs with high intrinsic proton conductivity.


Assuntos
Estruturas Metalorgânicas , Prótons , Ácidos Fosfóricos , Condutividade Elétrica
20.
Synapse ; 77(1): e22255, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121930

RESUMO

The regulation of dendritic spine morphology is a critical aspect of neuronal network refinement during development and modulation of neurotransmission. Previous studies revealed that glutamatergic transmission plays a central role in synapse development. AMPA receptors and NMDA receptors regulate spine morphology in an activity dependent manner. However, whether and how Kainate receptors (KARs) regulate synapse development remains poorly understood. In this study, we found that GluK1 and GluK2 may play distinct roles in synapse development. In primary cultured hippocampal neurons, we found overexpression of the calcium-permeable GluK2(Q) receptor variant increased spine length and spine head area compared to overexpression of the calcium-impermeable GluK2(R) variant or EGFP transfected, control neurons, indicating that Q/R editing may play a role in GluK2 regulation of synapse development. Intriguingly, neurons transfected with GluK1(Q) showed decreased spine length and spine head area, while the density of dendritic spines was increased, suggesting that GluK1(Q) and GluK2(Q) have different effects on synaptic development. Swapping the critical domains between GluK2 and GluK1 demonstrated the N-terminal domain (NTD) is responsible for the different effects of GluK1 and GluK2. In conclusion, Kainate receptors GluK1 and GluK2 have distinct roles in regulating spine morphology and development, a process likely relying on the NTD.


Assuntos
Cálcio , Receptores de Ácido Caínico , Receptores de Ácido Caínico/genética , Receptores de AMPA , Sinapses , Receptores de N-Metil-D-Aspartato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA