Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.881
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1396892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720877

RESUMO

Hydrogel is considered as a promising candidate for wound dressing due to its tissue-like flexibility, good mechanical properties and biocompatibility. However, traditional hydrogel dressings often fail to fulfill satisfied mechanical, antibacterial, and biocompatibility properties simultaneously, due to the insufficient intrinsic bactericidal efficacy and the addition of external antimicrobial agents. In this paper, hydroxyl-contained acrylamide monomers, N-Methylolacrylamide (NMA) and N-[Tris (hydroxymethyl)methyl] acrylamide (THMA), are employed to prepare a series of polyacrylamide hydrogel dressings xNMA-yTHMA, where x and y represent the mass fractions of NMA and THMA in the hydrogels. We have elucidated that the abundance of hydroxyl groups determines the antibacterial effect of the hydrogels. Particularly, hydrogel 35NMA-5THMA exhibits excellent mechanical properties, with high tensile strength of 259 kPa and large tensile strain of 1737%. Furthermore, the hydrogel dressing 35NMA-5THMA demonstrates remarkable inherent antibacterial without exogenous antimicrobial agents owing to the existence of abundant hydroxyl groups. Besides, hydrogel dressing 35NMA-5THMA possesses excellent biocompatibility, in view of marginal cytotoxicity, low hemolysis ratio, and negligible inflammatory response and organ toxicity to mice during treatment. Encouragingly, hydrogel 35NMA-5THMA drastically promote the healing of bacteria-infected wound in mice. This study has revealed the importance of polyhydroxyl in the antibacterial efficiency of hydrogels and provided a simplified strategy to design wound healing dressings with translational potential.

2.
Micron ; 183: 103648, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38723296

RESUMO

The mallard webbed foot represents an exemplary model of biomechanical efficiency in avian locomotion. This study delves into the intricate material assembly and tendon morphology of the mallard webbed foot, employing both macroscopic and microscopic analyses. Through histological slices and scanning electron microscopy (SEM), we scrutinized the coupling assembly of rigid and flexible materials such as skin, tendon, and bone, while elucidating the biomechanical functions of tendons across various segments of the tarsometatarsophalangeal joint (TMTPJ). The histological examination unveiled a complex structural hierarchy extending from the external integument to the skeletal framework. Notably, the bone architecture, characterized by compact bone and honeycombed trabeculae, showcases a harmonious blend of strength and lightweight design. Tendons, traversing the phalangeal periphery, surrounded by elastic fibers, collagen fibers, and fat tissue. Fat chambers beneath the phalanx, filled with adipocytes, provide effective buffering, enabling the phalanx to withstand gravity, provide support, and facilitate locomotion. Furthermore, SEM analysis provided insights into the intricate morphology and arrangement of collagen fiber bundles within tendons. Flexor tendons in proximal and middle TMTPJ segments adopt a wavy-type, facilitating energy storage and release during weight-bearing activities. In contrast, distal TMTPJ flexor tendons assume a linear-type, emphasizing force transmission across phalangeal interfaces. Similarly, extensor tendons demonstrate segment-specific arrangements tailored to their respective biomechanical roles, with wavy-type in proximal and distal segments for energy modulation and linear-type in middle segments for enhanced force transmission and tear resistance. Overall, our findings offer a comprehensive understanding of the mallard webbed foot's biomechanical prowess, underscoring the symbiotic relationship between material composition, tendon morphology, and locomotor functionality. This study not only enriches our knowledge of avian biomechanics but also provides valuable insights for biomimetic design and tissue engineering endeavors.

3.
ISA Trans ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38744610

RESUMO

Electro-hydraulic systems are extensively utilized to generate desired acceleration waveforms to provide a vibration environment for testing the performance and reliability of objects in various industrial applications. However, as electro-hydraulic systems are often affected by some inevitable drawbacks resulted from hydraulic nonlinearities, unwanted dynamic variations and disturbances, the generated acceleration waveform is generally far behind the expectation. In this paper, a convex combined adaptive controller with input shaping technique is proposed for enhancing the transient acceleration waveform replication accuracy of electro-hydraulic systems. The proposed controller is comprised of a three variable controller at the bottom level, an input shaping technique controller at the middle level, and a convex combined adaptive controller at the upper level. The three variable controller is firstly utilized for the establishment of a fundamental closed-loop acceleration control system, and then the input shaping technique controller is constructed by introducing an offline designed inverse prefilter utilizing the multi-innovation recursive least squares algorithm and the zero magnitude error tracking algorithm. The convex combined adaptive controller at the upper level is comprised of two individual adaptive filters with high and low step sizes, which provides the merits of fast convergence rate and high tracking accuracy, and it is further exploited to address for system's dynamic variations, model uncertainties and unexpected perturbations. Comparative experiments of the proposed controller with a manually generated random waveform and a recorded earthquake waveform as the testing inputs are conducted on a typical electro-hydraulic test bench, and the corresponding results demonstrate the feasibility and superiority of the proposed controller in improving the transient acceleration waveform replication performance of electro-hydraulic systems.

4.
Curr Zool ; 70(2): 174-181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38726244

RESUMO

Theory predicts that males and females of dioecious species typically engage in an evolutionary sexual conflict over the frequency and choice of mating partner. Female sexual cannibalism, a particularly dramatic illustration of this conflict, is widespread in certain animal taxa including spiders. Nevertheless, females of some funnel weaving spiders that are generally aggressive to conspecifics enter a cataleptic state after male courtship, ensuring the males can mate without risk of attack. In this study, we demonstrated that the physical posture and duration, metabolites, and central neurotransmitters of females of Aterigena aculeata in sexual catalepsy closely resemble females in thanatosis but are distinct from those in anesthesia, indicating that the courted females feign death to eliminate the risk of potentially aggressive responses and thereby allow preferred males to mate. Unlike the taxonomically widespread thanatosis, which generally represents a deceptive visual signal that acts against the interest of the receivers, sexual catalepsy of females in the funnel weaving spiders may deliver a sexual-receptive signal to the courting males and thereby benefit both the signal senders and receivers. Therefore, sexual catalepsy in A. aculeata may not reflect a conflict but rather a confluence of interest between the sexes.

5.
Small Methods ; : e2301778, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38741551

RESUMO

With the rapid development and maturity of electrochemical CO2 conversion involving cathodic CO2 reduction reaction (CO2RR) and anodic oxygen evolution reaction (OER), conventional ex situ characterizations gradually fall behind in detecting real-time products distribution, tracking intermediates, and monitoring structural evolution, etc. Nevertheless, advanced in situ techniques, with intriguing merits like good reproducibility, facile operability, high sensitivity, and short response time, can realize in situ detection and recording of dynamic data, and observe materials structural evolution in real time. As an emerging visual technique, scanning electrochemical microscope (SECM) presents local electrochemical signals on various materials surface through capturing micro-current caused by reactants oxidation and reduction. Importantly, SECM holds particular potentials in visualizing reactive intermediates at active sites and obtaining instantaneous morphology evolution images to reveal the intrinsic reactivity of active sites. Therefore, this review focuses on SECM fundamentals and its specific applications toward CO2RR and OER, mainly including electrochemical behavior observation on local regions of various materials, target products and onset potentials identification in real-time, reaction pathways clarification, reaction kinetics exploration under steady-state conditions, electroactive materials screening and multi-techniques coupling for a joint utilization. This review undoubtedly provides a leading guidance to extend various SECM applications to other energy-related fields.

6.
RSC Adv ; 14(23): 16228-16239, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38769955

RESUMO

Dental erosion is a common problem in dentistry, and it refers to the chronic pathological loss of dental hard tissues due to nonbacterially produced acids, primarily caused by the exposure of teeth to exogenous acids. Dietary factors play a pivotal part in the pathogenesis of dental erosion, with a high intake of acidic beverages leading to an increased prevalence of dental erosion in adolescents. Fluoride is mainly used in clinical practice to prevent dental erosion. However, long-term fluoride intake may lead to chronic fluorosis symptoms caused by fluoride overdose. Nano-coatings on dental surfaces have become a popular area of research in dental materials in recent years. The objective of this study was to develop a novel nerol-segmented waterborne polyurethane nano-coating to protect teeth from direct contact with an acidic environment and to provide a safe, effective method for preventing dental acid erosion.

7.
Oncogene ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773262

RESUMO

Cancer stem cells (CSCs), which are distinct subpopulations of tumor cells, have a substantially higher tumor-initiating capacity and are closely related to poor clinical outcomes. Damage to organelles can trigger CSC pool exhaustion; however, the underlying mechanisms are poorly understood. ZER6 is a zinc-finger protein with two isoforms possessing different amino termini: p52-ZER6 and p71-ZER6. Since their discovery, almost no study reported on their biological and pathological functions. Herein, we found that p52-ZER6 was crucial for CSC population maintenance; p52-ZER6-knocking down almost abolished the tumor initiation capability. Through transcriptomic analyses together with in vitro and in vivo studies, we identified insulin like growth factor 1 receptor (IGF1R) as the transcriptional target of p52-ZER6 that mediated p52-ZER6 regulation of CSC by promoting pro-survival mitophagy. Moreover, this regulation of mitophagy-mediated CSC population maintenance is specific to p52-ZER6, as p71-ZER6 failed to exert the same effect, most possibly due to the presence of the HUB1 domain at its N-terminus. These results provide a new perspective on the regulatory pathway of pro-survival mitophagy in tumor cells and the molecular mechanism underlying p52-ZER6 oncogenic activity, suggesting that targeting p52-ZER6/IGF1R axis to induce CSC pool exhaustion may be a promising anti-tumor therapeutic strategy.

8.
Nat Plants ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773271

RESUMO

The nuclear pore complex (NPC) is vital for nucleocytoplasmic communication. Recent evidence emphasizes its extensive association with proteins of diverse functions, suggesting roles beyond cargo transport. Yet, our understanding of NPC's composition and functionality at this extended level remains limited. Here, through proximity-labelling proteomics, we uncover both local and global NPC-associated proteome in Arabidopsis, comprising over 500 unique proteins, predominantly associated with NPC's peripheral extension structures. Compositional analysis of these proteins revealed that the NPC concentrates chromatin remodellers, transcriptional regulators and mRNA processing machineries in the nucleoplasmic region while recruiting translation regulatory machinery on the cytoplasmic side, achieving a remarkable orchestration of the genetic information flow by coupling RNA transcription, maturation, transport and translation regulation. Further biochemical and structural modelling analyses reveal that extensive interactions with nucleoporins, along with phase separation mediated by substantial intrinsically disordered proteins, may drive the formation of the unexpectedly large nuclear pore proteome assembly.

9.
BMC Geriatr ; 24(1): 442, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773457

RESUMO

BACKGROUND: The purpose of this study was to evaluate the safety and efficacy of preoperative concurrent chemoradiotherapy (preCRT) for locally advanced rectal cancer in older people who were classified as "fit" by comprehensive geriatric assessment (CGA). METHODS: A single-arm, multicenter, phase II trial was designed. Patients were eligible for this study if they were aged 70 years or above and met the standards of "fit" (SIOG1) as evaluated by CGA and of the locally advanced risk category. The primary endpoint was 2-year disease-free survival (DFS). Patients were scheduled to receive preCRT (50 Gy) with raltitrexed (3 mg/m2 on days 1 and 22). RESULTS: One hundred and nine patients were evaluated by CGA, of whom eighty-six, eleven and twelve were classified into the fit, intermediate and frail category. Sixty-eight fit patients with a median age of 74 years were enrolled. Sixty-four patients (94.1%) finished radiotherapy without dose reduction. Fifty-four (79.3%) patients finished the prescribed raltitrexed therapy as planned. Serious toxicity (grade 3 or above) was observed in twenty-four patients (35.3%), and fourteen patients (20.6%) experienced non-hematological side effects. Within a median follow-up time of 36.0 months (range: 5.9-63.1 months), the 2-year overall survival (OS), cancer-specific survival (CSS) and disease-free survival (DFS) rates were 89.6% (95% CI: 82.3-96.9), 92.4% (95% CI: 85.9-98.9) and 75.6% (95% CI: 65.2-86.0), respectively. Forty-eight patients (70.6%) underwent surgery (R0 resection 95.8%, R1 resection 4.2%), the corresponding R0 resection rate among the patients with positive mesorectal fascia status was 76.6% (36/47). CONCLUSION: This phase II trial suggests that preCRT is efficient with tolerable toxicities in older rectal cancer patients who were evaluated as fit based on CGA. TRIAL REGISTRATION: The registration number on ClinicalTrials.gov was NCT02992886 (14/12/2016).


Assuntos
Quimiorradioterapia , Avaliação Geriátrica , Neoplasias Retais , Humanos , Idoso , Masculino , Feminino , Neoplasias Retais/terapia , Idoso de 80 Anos ou mais , Avaliação Geriátrica/métodos , Quimiorradioterapia/métodos , Intervalo Livre de Doença , Cuidados Pré-Operatórios/métodos , Tiofenos/administração & dosagem , Tiofenos/uso terapêutico , Equipe de Assistência ao Paciente , Quinazolinas/administração & dosagem , Quinazolinas/uso terapêutico
11.
J Dig Dis ; 25(3): 176-190, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38697922

RESUMO

OBJECTIVES: Functional constipation (FC), a common functional gastrointestinal disorder, is usually overlapping with upper gastrointestinal symptoms (UGS). We aimed to explore the clinical characteristics of patients with FC overlapping UGS along with the related risk factors. METHODS: The differences in the severity of constipation symptoms, psychological state, quality of life (QoL), anorectal motility and perception function, autonomic function, and the effect of biofeedback therapy (BFT) among patients with FC in different groups were analyzed, along with the risk factors of overlapping UGS. RESULTS: Compared with patients with FC alone, those with FC overlapping UGS had higher scores in the Patient Assessment of Constipation Symptoms and Self-Rating Anxiety Scale and lower scores in the Short Form-36 health survey (P < 0.05). Patients with FC overlapping UGS also had lower rectal propulsion, more negative autonomic nervous function, and worse BFT efficacy (P < 0.05). Overlapping UGS, especially overlapping functional dyspepsia, considerably affected the severity of FC. Logistic regression model showed that age, body mass index (BMI), anxiety, exercise, and sleep quality were independent factors influencing overlapping UGS in patients with FC. CONCLUSIONS: Overlapping UGS reduces the physical and mental health and the QoL of patients with FC. It also increases the difficulty in the treatment of FC. Patient's age, BMI, anxiety, physical exercise, and sleep quality might be predictors for FC overlapping UGS.


Assuntos
Constipação Intestinal , Qualidade de Vida , Humanos , Constipação Intestinal/fisiopatologia , Constipação Intestinal/psicologia , Constipação Intestinal/etiologia , Feminino , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto , Índice de Gravidade de Doença , Biorretroalimentação Psicológica , Ansiedade , Gastroenteropatias/psicologia , Gastroenteropatias/fisiopatologia , Gastroenteropatias/etiologia , Idoso , Motilidade Gastrointestinal/fisiologia
12.
Reprod Toxicol ; : 108604, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38703919

RESUMO

Tripterygium glycosides (TG) is extracted from the roots of Chinese herbal medicine named Tripterygium wilfordii Hook F (TwHF). TG tablets are the representative TwHF-based agents with anti-inflammatory and immunomodulatory activities for treating rheumatoid arthritis. Although the curative effect of TG is remarkable, the clinical application is limited by a variety of organ toxicity. One of the most serious side-effects induced by TG is damage of the male reproductive system and the toxic mechanism is still not fully elucidated. TG-induced testicular injury was observed in male mice by treated with different concentrations of TG. The results showed that TG induced a significant decrease in testicular index. Pathological observation showed that spermatogenic cells were obviously shed, arranged loosely, and the spermatogenic epithelium was thin compared with control mice. In addition, the toxic effect of TG on mouse spermatogonia GC-1 cells was investigated. The results displayed that TG induced significant cytotoxicity in mouse GC-1 cells. To explore the potential toxic components that triggered testicular injury, the effects of 8 main components of TG on the viability of GC-1 cells were detected. The results showed that celastrol was the most toxic component of TG to GC-1 cells. Western blot analysis showed that LC3-II and the ratio of LC3-II/LC3-I were significantly increased and the expression level of p62 were decreased in both TG and celastrol treated cells, which indicated the significant activation of autophagy in spermatogonia cells. Therefore, autophagy plays an important role in the testicular injury induced by TG, and inhibition of autophagy is expected to reduce the testicular toxicity of TG.

13.
Acta Pharmacol Sin ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702500

RESUMO

It has been shown that prostaglandin (PG) E2 synthesized in the lateral parabrachial nucleus (LPBN) is involved in lipopolysaccharide-induced fever. But the neural mechanisms of how intra-LPBN PGE2 induces fever remain unclear. In this study, we investigated whether the LPBN-preoptic area (POA) pathway, the thermoafferent pathway for feed-forward thermoregulatory responses, mediates fever induced by intra-LPBN PGE2 in male rats. The core temperature (Tcore) was monitored using a temperature radiotelemetry transponder implanted in rat abdomen. We showed that microinjection of PGE2 (0.28 nmol) into the LPBN significantly enhanced the density of c-Fos-positive neurons in the median preoptic area (MnPO). The chemical lesioning of MnPO with ibotenate or selective genetic lesioning or inhibition of the LPBN-MnPO pathway significantly attenuated fever induced by intra-LPBN injection of PGE2. We demonstrated that EP3 receptor was a pivotal receptor for PGE2-induced fever, since microinjection of EP3 receptor agonist sulprostone (0.2 nmol) or EP3 receptor antagonist L-798106 (2 nmol) into the LPBN mimicked or weakened the pyrogenic action of LPBN PGE2, respectively, but this was not the case for EP4 and EP1 receptors. Whole-cell recording from acute LPBN slices revealed that the majority of MnPO-projecting neurons originating from the external lateral (el) and dorsal (d) LPBN were excited and inhibited, respectively, by PGE2 perfusion, initiating heat-gain and heat-loss mechanisms. The amplitude but not the frequency of spontaneous and miniature glutamatergic excitatory postsynaptic currents (sEPSCs and mEPSCs) in MnPO-projecting LPBel neurons increased after perfusion with PGE2; whereas the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and the A-type potassium (IA) current density did not change. In MnPO-projecting LPBd neurons, neither sEPSCs nor sIPSCs responded to PGE2; however, the IA current density was significantly increased by PGE2 perfusion. These electrophysiological responses and the thermoeffector reactions to intra-LPBN PGE2 injection, including increased brown adipose tissue thermogenesis, shivering, and decreased heat dissipation, were all abolished by L-798106, and mimicked by sulprostone. These results suggest that the pyrogenic effects of intra-LPBN PGE2 are mediated by both the inhibition of the LPBd-POA pathway through the EP3 receptor-mediated activation of IA currents and the activation of the LPBel-POA pathway through the selective enhancement of glutamatergic synaptic transmission via EP3 receptors.

14.
Int J Legal Med ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760564

RESUMO

BACKGROUND & OBJECTIVE: Sex estimation is a critical aspect of forensic expertise. Some special anatomical structures, such as the maxillary sinus, can still maintain integrity in harsh environmental conditions and may be served as a basis for sex estimation. Due to the complex nature of sex estimation, several studies have been conducted using different machine learning algorithms to improve the accuracy of sex prediction from anatomical measurements. MATERIAL & METHODS: In this study, linear data of the maxillary sinus in the population of northwest China by using Cone-Beam Computed Tomography (CBCT) were collected and utilized to develop logistic, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and random forest (RF) models for sex estimation with R 4.3.1. CBCT images from 477 samples of Han population (75 males and 81 females, aged 5-17 years; 162 males and 159 females, aged 18-72) were used to establish and verify the model. Length (MSL), width (MSW), height (MSH) of both the left and right maxillary sinuses and distance of lateral wall between two maxillary sinuses (distance) were measured. 80% of the data were randomly picked as the training set and others were testing set. Besides, these samples were grouped by age bracket and fitted models as an attempt. RESULTS: Overall, the accuracy of the sex estimation for individuals over 18 years old on the testing set was 77.78%, with a slightly higher accuracy rate for males at 78.12% compared to females at 77.42%. However, accuracy of sex estimation for individuals under 18 was challenging. In comparison to logistic, KNN and SVM, RF exhibited higher accuracy rates. Moreover, incorporating age as a variable improved the accuracy of sex estimation, particularly in the 18-27 age group, where the accuracy rate increased to 88.46%. Meanwhile, all variables showed a linear correlation with age. CONCLUSION: The linear measurements of the maxillary sinus could be a valuable tool for sex estimation in individuals aged 18 and over. A robust RF model has been developed for sex estimation within the Han population residing in the northwestern region of China. The accuracy of sex estimation could be higher when age is used as a predictive variable.

15.
Food Chem X ; 22: 101395, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38694544

RESUMO

Xinyu mandarin is popular for its good flavor, but its flavor deteriorates during postharvest storage. To better understand the underlying basis of this change, the dynamics of the sensory profiles were investigated throughout fruit ripening and storage. Sweetness and sourness, determined especially by sucrose and citric acid content, were identified as the key sensory factors in flavor establishment during ripening, but not in flavor deterioration during storage. Postharvest flavor deterioration is mainly attributed to the reduction of retronasal aroma and the development of off-flavor. Furthermore, sugars, acids and volatile compounds were analyzed. Among the 101 detected volatile compounds, 10 changed significantly during the ripening process. The concentrations of 15 volatile components decreased during late postharvest storage, among which α-pinene and d-limonene were likely to play key roles in the reduction of aroma. Three volatile compounds were found to increase during storage, associated with off-flavor development.

16.
Acta Pharmacol Sin ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719954

RESUMO

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

17.
Int J Rheum Dis ; 27(5): e15166, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720417

RESUMO

OBJECTIVES: To identify the effectiveness and safety of inactivated SARS-CoV-2 vaccines in rheumatic and musculoskeletal diseases (RMDs) patients. METHODS: RMD patients with COVID-19 in Jiangsu Province were polled between December 8, 2022, and February 1, 2023. Information on demographics, disease characteristics, antirheumatic drug use, vaccination status and survival state were collected. COVID-19-associated pneumonia was the primary outcome. The effect of COVID-19 immunization on RMD patients was assessed using multivariate logistic regression, and the adverse events (AEs) following vaccination were evaluated. RESULTS: Among 592 RMD patients with COVID-19, 276 (46.6%) individuals experienced COVID-19-associated pneumonia, and 290 (49.0%) patients were injected with inactivated vaccines. In multivariate logistic regression analysis, vaccines reduced the incidence of COVID-19-associated pneumonia, and receiving booster vaccine was an independent protective factor for COVID-19-associated pneumonia in RMD patients (OR 0.64, 95% CI 0.41-0.98, p = .034). In particular, inactivated vaccines have a protective impact on RMD patients with a high risk of developing pneumonia, including those aged 45 years and older (OR 0.53, 95% CI 0.34-0.83), and who have lung involvement (OR 0.43, 95% CI 0.23-0.82). The total AEs rate of vaccines was 13.9% (40/290), only 11 (3.8%) experienced the recurrence or deterioration of RMDs, and no serious AEs occurred. CONCLUSION: Inactivated COVID-19 vaccines were safe and effective in reducing the risk of COVID-19-associated pneumonia of RMD patients in China.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Doenças Musculoesqueléticas , Doenças Reumáticas , Vacinas de Produtos Inativados , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Doenças Reumáticas/imunologia , Doenças Reumáticas/tratamento farmacológico , Doenças Reumáticas/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/administração & dosagem , Doenças Musculoesqueléticas/diagnóstico , Doenças Musculoesqueléticas/epidemiologia , Vacinas de Produtos Inativados/efeitos adversos , Idoso , Adulto , SARS-CoV-2/imunologia , China/epidemiologia , Eficácia de Vacinas , Resultado do Tratamento , Fatores de Risco
18.
J Hazard Mater ; 472: 134469, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38691995

RESUMO

The scarcity of selective adsorbents for efficient extraction and removal of microcystins (MCs) from complex samples greatly limits the precise detection and effective control of MCs. Three-dimensional covalent organic frameworks (3D COFs), characterized by their large specific surface areas and highly ordered rigid structure, are promising candidates, but suffer from lack of specific recognition. Herein, we design to engineer molecularly imprinted cavities within 3D COFs via molecularly imprinted technology, creating a novel adsorbent with exceptional selectivity, kinetics and capacity for the efficient extraction and removal of MCs. As proof-of-concept, a new CC bond-containing 3D COF, designated JNU-7, is designed and prepared for copolymerization with methacrylic acid, the pseudo template L-arginine and ethylene dimethacrylate to yield the JNU-7 based molecularly imprinted polymer (JNU-7-MIP). The JNU-7-MIP exhibits a great adsorption capacity (156 mg g-1) for L-arginine. Subsequently, the JNU-7-MIP based solid-phase extraction coupled with high performance liquid chromatography-mass spectrometry achieves low detection limit of 0.008 ng mL-1, wide linear range of 0.025-100 ng mL-1, high enrichment factor of 186, rapid extraction of 10 min, and good recoveries of 92.4%-106.5% for MC-LR. Moreover, the JNU-7-MIP can rapidly remove the MC-LR from 1 mg L-1 to levels (0.26-0.35 µg L-1) lower than the WHO recommended limit for drinking water (1 µg L-1). This work reveals the considerable potential of 3D COF based MIPs as promising adsorbents for the extraction and removal of contaminants in complex real samples.

19.
Int J Biol Macromol ; : 132371, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750861

RESUMO

Aflatoxin B1 (AFB1) is one of the most widespread contaminants in agricultural commodities. Pleurotus eryngii (PE) is widely used as a feed additive for its anti-inflammatory properties, and its major active substance is believed to be polysaccharides. This study aims to explore the underlying mechanism of dietary PE polysaccharides alleviating AFB1-induced toxicity in ducks. The major monosaccharide components of PE polysaccharides were identified as glucose, mannose, galactose, glucuronic acid, and fucose. The results showed that dietary PE polysaccharides could alleviate liver inflammation, alleviate intestinal barrier dysfunction, and change the imbalanced gut microbiota induced by AFB1 in ducks. However, PE polysaccharides failed to exert protective roles on the liver and intestine injury induced by AFB1 in antibiotic-treated ducks. The PE + AFB1-originated microbiota showed a positive effect on intestinal barrier and inflammation, the SCFAs transport via the gut-liver axis, and liver inflammation compared with the AFB1-originated microbiota in ducks. These findings provided a possible mechanism that PE polysaccharides alleviated AFB1-induced liver inflammation in ducks by remodeling gut microbiota, regulating microbiota-derived SCFAs transport via the gut-liver axis, and inhibiting inflammatory gene expressions in the liver, which may provide new insight for therapeutic methods against AFB1 exposure in animals.

20.
ACS Omega ; 9(12): 14287-14296, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559934

RESUMO

The honeycomb structure demonstrates exceptional stability, efficient mechanical performance, outstanding load-bearing capacity, and energy-saving and lightweight properties, rendering it extensively employed in various fields such as industrial manufacturing, radiation protection building, aerospace engineering, and wave-absorbing stealth materials. Bionic design can enhance the performance of structures, making bionic honeycomb design valuable in engineering. This study employs a bionic optimization design based on the original honeycomb size to investigate the impact of a new composite honeycomb core structure on mechanical properties. Orthogonal experiments are conducted to explore the effect of honeycomb size on mechanical properties and determine the optimal size. Combining numerical simulation and 3D printing experiments, we examine the mechanical properties of both nano-Fe3O4 particle-distributed honeycomb structure and common structures, analyzing mechanisms behind their tensile and compressive properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA